Reinforced Concrete:Mechanics and Design: International Edition - James Wight - 9780132074742 - Civil and Environmental Engineering - Structural Engineering - Pearson Schweiz AG - Der Fachverlag fuer Bildungsmedien - 978-0-1320-7474-2

Home > Higher Education > Civil and Environmental Engineering > Structural Engineering > Reinforced Concrete:Mechanics and Design: International Edition

Reinforced Concrete:Mechanics and Design: International Edition

Seite senden! 

Titel:   Reinforced Concrete:Mechanics and Design: International Edition
Reihe:   Prentice Hall
Autor:   James K. Wight / James G. MacGregor
Verlag:   Pearson
Einband:   Softcover
Auflage:   5
Sprache:   Englisch
Seiten:   1126
Erschienen:   Oktober 2008
ISBN13:   9780132074742
ISBN10:   0-13-207474-5
Status:   Der Titel ist leider nicht mehr lieferbar. Sorry, This title is no longer available. Malheureusement ce titre est épuisé.
 
Ersatztitel:
ISBNTitelAuflageEinbandErscheintVerfügbarPreis
9780273764540 Reinforced Concrete: Mechanics and Design:International Edition 6 Softcover 11.2011
ca. 7-9 Tage
139.00

Reinforced Concrete:Mechanics and Design: International Edition

Description

Reinforced concrete design encompasses both the art and science of engineering. This book presents the theory of reinforced concrete as a direct application of the laws of statics and mechanics of materials. In addition, it emphasizes that a successful design not only satisfies design rules, but also is capable of being built in a timely fashion and for a reasonable cost. A multi-tiered approach makes Reinforced Concrete: Mechanics and Design an outstanding textbook for a variety of university courses on reinforced concrete design. Topics are normally introduced at a fundamental level, and then move to higher levels where prior educational experience and the development of engineering judgment will be required.


Features

  • The analysis of the flexural strength of beam sections is presented in Chapter 4.  this is the first significant design-related topic, it is presented at a level appropriate for new students. 
  • Closely related material on the analysis of column sections for combined axial load and bending is presented in Chapter 11 
  • Advanced subjects are also presented in the same chapters at levels suitable for advanced undergraduate or graduate students. These topics include, for example, the complete moment versus curvature behavior of a beam section with various tension reinforcement percentages and the use strain-compatibility to analyze either over-reinforced beam sections, or column sections with multiple reinforcement layers.
  • More advanced topics are covered in the later chapters, making this textbook valuable for both undergraduate and graduate courses, as well as serving as a key reference in design offices.
  • Extensive figures are used to illustrate aspects of reinforced concrete member behavior and the design process.
  • Emphasis is placed on logical order and completeness for the many design examples presented in the book.
  • Guidance is given in the text and in examples to help students develop the engineering judgment required to become a successful designer of reinforced concrete structures.
  • Chapters 2 and 3 present general information on various topics related to structural design and construction, and concrete material properties. Frequent references are made back to these topics throughout the text.
Zum Seitenanfang

New to this Edition

One of the most significant changes was the updating of all chapters to be in compliance with the 2008 edition of the ACI Building Code. New problems were developed for chapters where major changes were made, and all of the examples throughout the text were either reworked or checked for accuracy. Other changes include the following:

 

1. All flexural analysis of various beam and slab sections is now covered in Chapter 4.  Previously this material was given in three different chapters. After completing this chapter students should be prepared to analyze any beam section they may encounter either in their courses or in a design office.

2. All flexural design for beams and one-way slabs is covered in Chapter 5. Information on continuous floor systems, which was in Chapter 10 of prior editions, has been moved to Chapter 5. Also, Chapter 5 gives more extensive information on structural analysis of continuous floor systems, including modeling assumptions and the interplay between analysis and design.

3. Chapter 12 has been significantly modified to comply with changes in the ACI Code for analysis and design of slender columns. A new detailed design example is included to demonstrate the new code provisions.

4. Chapter 13 includes all of the analysis and design requirements for two-way floor systems, which was previously presented in two chapters. As with Chapter 5, this chapter includes new information on structural analysis and modeling assumptions for continuous two-way floor systems.  The historic introduction for this topic and the detailed design examples have been retained.

5. An expanded coverage of the yield-line analysis method for two-way slabs, including several examples, is presented in Chapter 14.

6. In Chapter 18 the discussion of flexural design procedures for shear walls that resist lateral loads, including walls with either uniformly distributed vertical reinforcement or with vertical reinforcement concentrated at the edges of the wall section, has been expanded. Also, a capacity-design approach is presented for the shear design of structural walls that resist earthquake-induced forces.  

7. Appendix A now contains a large number of axial load vs. moment interaction diagrams that incorporate the strength reduction factor. Both students and designers should find these figures very useful.

 

Zum Seitenanfang

Table of Contents

Brennon Williams is among the top .NET developers in the UK, consistently contracted by leading consultancies for cutting edge development projects. He has an extremely wide skill set as a hybrid designer/developer, with experience in Flash, 3D Object Modeling, and DirectX based development. Brennon's UK company X-Coders Limited is the preferred Blend/WPF training and development provider for some of the World's largest companies.

 

For almost 15 years, Brennon has worked in several countries as a consultant software developer. He is currently employed as XAML Architect for SmithBayes in the UK and Dev Lead/XAML Architect for Motorola's WPF project in the United States and Sri Lanka. He is also creating his ExpressTrain video tutorial network online at ww.learnexpressionstudio.com. When he schedules an hour or two of free time, he enjoys nothing more than having a BBQ with his wife and kids in the backyard.

Zum Seitenanfang

Back Cover

Reinforced Concrete Mechanics & Design
Fifth Edition
James K. Wight • James G. MacGregor

A multi-tiered approach makes Reinforced Concrete: Mechanics and Design an outstanding textbook for a variety of courses on reinforced concrete design.
This new edition has been updated so all chapters are in compliance with the 2008 edition of the ACI Building Code. New problems were developed for chapters where major changes were made, and all of the examples throughout the text were either reworked or checked for accuracy. Other changes include the following:
•  All flexural analysis of various beam and slab sections is now covered in Chapter 4. After completing this chapter students should be prepared to analyze any beam section they may encounter either in their courses or in a design office.
•  All flexural design for beams and one-way slabs is covered in Chapter 5. Information on continuous floor systems, which was in Chapter 10 of prior  editions, has been moved to Chapter 5. Also, Chapter 5 gives more extensive information on structural analysis of continuous floor systems, including modeling assumptions and the interplay between analysis and design.
•  Chapter 12 has been significantly modified to comply with changes in the ACI Code for analysis and design of slender columns. A new detailed design example is included to demonstrate the new code provisions.
•  Chapter 13 includes all of the analysis and design requirements for two-way floor systems, which was previously presented in two chapters. As with Chapter 5, this chapter includes new information on structural analysis and modeling assumptions for continuous two-way floor systems.
•  An expanded coverage of the yield-line analysis method for two-way slabs, including several examples, is presented in Chapter 14.
•  In Chapter 18 the discussion of flexural design procedures for shear walls that resist lateral loads,
including walls with either uniformly distributed vertical reinforcement or with vertical reinforcement
concentrated at the edges of the wall section, has been expanded. Also, a capacity-design approach is
presented for the shear design of structural walls that resist earthquake-induced forces.  
•  Appendix A now contains a large number of axial load vs. moment interaction diagrams that incorporate the strength reduction factor. Both students and designers should find these figures very useful.
Zum Seitenanfang

Author

James K. Wight received his B.S. and M.S. degrees in Civil Engineering from Michigan State University in 1969 and 1970, and his Ph.D. from the University of Illinois at Urbana-Champaign in 1973. He has been a professor of structural engineering in the Civil and Environmental Engineering Department at the University of Michigan since 1973. He teaches undergraduate and graduate classes on analysis and design of reinforced concrete structures. He is well known for his work in earthquake-resistant design of concrete structures and spent a one-year sabbatical leave in Japan where he was involved in the construction and simulated earthquake testing of a full-scale reinforced concrete building. Professor Wight has been an active member of the American Concrete Institute since 1973 and was named a Fellow of the Institute in 1984. He is the immediate past-Chair of the ACI Building Code Committee 318 and past-Chair of Subcommittee 318-E. He is also past-Chair of the ACI Technical Activities Committee and Committee 352 on Joints and Connections in Concrete Structures. He has received several awards from the American Concrete Institute including the Delmar Bloem Distinguished Service Award (1991), the Joe Kelly Award (1999), the Boise Award (2002), the Structural Research Award (2003) for a paper he co-authored with a former student, and the Alfred Lindau Award (2008). Professor Wight has received numerous awards for his teaching and service at the University of Michigan including the ASCE Student Chapter Teacher of the Year Award, the College of Engineering Distinguished Service Award, the College of Engineering Teaching Excellence Award, and the Chi Epsilon-Great Lakes District Excellence in Teaching Award. He recently received a Distinguished Alumnus Award (2008) from the Civil and Environmental Engineering Department of the University of Illinois at Urbana-Champaign.

 

 

James G. MacGregor, University Professor of Civil Engineering at the University of Alberta, Canada, retired in 1993 after 33 years of teaching, research, and service, including three years as Chair of the Department of Civil Engineering. He has a B.Sc. from the University of Alberta and a M.S. and Ph.D. from the University of Illinois. In 1998 and 1999 he received a Doctor of Engineering (Hon) from Lakehead University, and in 1999 a Doctor of Science (Hon) from the University of Alberta. Dr. MacGregor is a Fellow of the Academy of Science of the Royal Society of Canada and a Fellow of the Canadian Academy of Engineering. A Past President and Honorary Member of the American Concrete Institute, Dr. MacGregor has been an active member of ACI since 1958. He has served on ACI technical committees including the ACI Building Code Committee and its subcommittees on flexure, shear, and stability and the ACI Technical Activities Committee. This involvement and his research has been recognized by honors jointly awarded to MacGregor, his colleagues, and students. These included the ACI Wason Medal for the Most Meritorious Paper (1972, and 1999), the ACI Raymond C. Reese Medal, and the ACI Structural Research Award (1972 and 1999). His work on the developing the Strut-and-Tie model for the ACI Code was recognized by the ACI Structural Research Award (2004). In addition, he has received several ASCE Awards, including the prestigious ASCE Norman Medal with three colleagues (1983). Dr. MacGregor chaired the Canadian Committee on Reinforced Concrete Design from 1977 through 1989, moving on to chair the Standing Committee on Structural Design for the National Building Code of Canada from 1990 through 1995. From 1973 to 1976 he was a member of the Council of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta. At the time of his retirement from the University of Alberta, Professor MacGregor was a principal in MKM Engineering Consultants. His last project with that firm was the derivation of site-specific load and resistance factors for an eight-mile long concrete bridge.

Zum Seitenanfang