Basic Principles and Calculations in Chemical Engineering

Reihe
Addison-Wesley
Autor
David M. Himmelblau / James B. Riggs
Verlag
Pearson
Einband
Softcover
Auflage
7
Sprache
Englisch
Seiten
1072
Erschienen
Dezember 2003
ISBN13
9780131233683
ISBN
0131233688
Related Titles


Produktdetail

Der Titel ist leider nicht mehr lieferbar. Sorry, This title is no longer available. Malheureusement ce titre est épuisé.

Ersatztitel


Description

Approprirate for all introductory courses in chemical engineering.

Basic Principles and Calculations in Chemical Engineering, Seventh Edition is a complete, practical, and student-friendly introduction to the principles and techniques of contemporary chemical, petroleum, and environmental engineering. Throughout, the authors introduce efficient and consistent methods for analyzing material and energy balance problems, organizing solutions, and calculating answers. The authors thoroughly address the behavior of gases, liquids, and solids: ideal/real gases, single component two-phase systems, gas-liquid systems, and more. This edition presents extensive new coverage, including new chapters on degrees of freedom, process simulation, and unsteady state materials. It brings together more examples and problems treating topics pertaining to the environment, safety, semiconductor processing, nanotechnology, biology and biotechnology. Recast into 29 modular chapters, it offers students and faculty members an exceptionally flexible approach to learning. The CD-ROM includes new Polymath software, a convenient physical property database, 200 supplementary problems, animations of working process equipment, and checklists designed to simplify learning and accelerate mastery.

Features

The classic introduction to the principles and calculation techniques used in chemical engineering - now in its 7th edition!

° Complete revision including brand new problems (35%), reorganization of Chapters, and additional pedagogy.

° The CD ROM contains over 100 additional examples with detailed solutions, and 100 additional problems with answers.

° David Himmelblau is recognized as a pioneer and leader in the Chemical Engineering community.

New to this Edition

  • New examples and problems covering safety, semiconductor processing, biology and biotechnology.
    • Helps students master the contemporary and emerging disciplines that are of increasingly urgent importance.

  • Reorganized into 29 flexible, modular chapters.
    • Gives students and faculty members unprecedented flexibility in organizing their learning.

  • Thoroughly updated CD-ROM-Includes convenient “point-and-click” physical property database containing over 740 compounds; descriptions and animations of working process equipment, and checklists designed to simplify learning and accelerate mastery.
    • Offers students start-to-finish resources for learning the principles of chemical engineering calculation, and using those principles to solve real problems.

  • New coverage of degrees of freedom, process simulation, and unsteady state materials.
    • Helps students focus on techniques that are rapidly increasing in importance.

  • Updated Polymath software for solving linear/nonlinear/differential equations and regression problems.
    • Gives students powerful software for virtually any chemical engineering calculation.

  • New glossaries in every chapter.
    • Makes it easier for students to understand key terms and concepts.

Table of Contents



Preface.


Read Me.


Frequently Asked Questions.

I. INTRODUCTION.

1. Dimensions, Units, and Their Conversion.

Units and Dimensions. Operations with Units. Conversion of Units and Conversion Factors. Dimensional Consistency (Homogeneity). Significant Figures. Validation of Problem Solutions.

2. Moles, Density, and Concentration.

The Mole. Density. Specific Gravity. Flow Rate. Mole Fraction and Mass (Weight) Fraction. Analyses of Multicomponent Solutions and Mixtures. Concentration.

3. Choosing A Basis.
4. Temperature.
5. Pressure.

Pressure and Its Units. Measurement of Pressure. Differential Pressure Measurements.

II. MATERIAL BALANCES.

6. Introduction to Material Balances.

The Concept of a Material Balance. Open and Closed Systems. Steady-State and Unsteady-State Systems. Multiple Component Systems. Accounting for Chemical Reactions in Material Balances. Material Balances for Batch and Semi-Batch Processes.

7. A General Strategy for Solving Material Balance Problems.

Problem Solving. The Strategy for Solving Problems.

8. Solving Material Balance Problems for Single Units without Reaction.
9. The Chemical Reaction Equation and Stoichiometry.

Stoichiometry. Terminology for Applications of Stoichiometry.

10. Material Balances for Processes Involving Reaction.

Species Material Balances. Element Material Balances. Material Balances Involving Combustion.

11. Material Balance Problems Involving Multiple Units.
12. Recycle, Bypass, Purge, and the Industrial Application Of Material Balances.

Introduction. Recycle without Chemical Reaction. Recycle with Chemical Reaction. Bypass and Purge. The Industrial Application of Material Balances.

III. GASES, VAPORS, LIQUIDS, AND SOLIDS.

13. Ideal Gases.

The Ideal Gas Law. Ideal Gas Mixtures and Partial Pressure. Material Balances Involving Ideal Gases.

14. Real Gases: Compressibility.
15. Real Gases: Equations of State.
16. Single Component Two-Phase Systems (Vapor Pressure).

Phase Diagrams. Modeling and Predicting Vapor Pressure as a Function of Temperature.

17. Two-Phase Gas-Liquid Systems (Saturation, Condensation, and Vaporization).

Saturation. Condensation. Vaporization.

18. Two-Phase Gas-Liquid Systems (Partial Saturation and Humidity).

Terminology Involved for Partial Saturation. Material Balance Problems Involving Partial Saturation.

19. The Phase Rule and Vapor-Liquid Equilibria.

The Gibbs Phase Rule. Vapor-Liquid Equlibria in Binary Systems.

20. Liquids and Gases in Equilibrium with Solids.

IV. ENERGY BALANCES.

21. Energy: Terminology, Concepts, and Units.

The Terminology Associated with Energy Balances. Types of Energy.

22. Introduction to Energy Balances For Processes Without Reaction.

The Concept of the Conservation of Energy. Energy Balances for Closed, Unsteady-State Systems. Energy Balances for Closed, Steady-State Systems. Energy Balances for Open, Unsteady-State Systems. Energy Balances for Open, Steady-State Systems.

23. Calculation of Enthalpy Changes.

Phase Transitions. Heat Capacity Equations. Tables and Charts to Retrieve Enthalpy Values. Computer Databases.

24. Application Of Energy Balances in the Absence of Chemical Reactions.

Simplifications of the General Energy Balance. The Strategy for Solving Energy Balance Problems. Application of the Energy Balance to Closed Systems. Application of the Energy Balance to Open Systems.

25. Energy Balances: How to Account for Chemical Reaction.

The Standard Heat (Enthalpy) of Formation. The Heat (Enthalpy) of Reaction. Merging the Heat of Formation with the Sensible Heat of a Compound in Making an Energy Balance. The Heat of Combustion.

26. Energy Balances That Include the Effects of Chemical Reaction.

Analysis of the Degrees of Freedom to Include the Energy Balance with Reaction. Applications of Energy Balances in Processes that Include Reactions.

27. Ideal Processes, Efficiency, and the Mechanical Energy Balance.

Ideal Reversible Processes. Efficiency. The Mechanical Energy Balance.

28. Heats of Solution and Mixing.

Heats of Solution, Dissolution, and Mixing. Introducing the Effects of Mixing into the Energy Balance.

29. Humidity (Psychrometric) Charts and Their Use.

Terminology. The Humidity (Psychrometric) Chart. Applications of the Humidity Chart.

V. SUPPLEMENTARY MATERIAL (ON THE ACCOMPANYING CD)

30. Analysis of the Degrees of Freedom in a Steady-State Process.
31. Solving Material and Energy Balances Using Process Simulators (Flowsheeting Codes).
32. Unsteady-State Material and Energy Balances.

VI. APPENDICES.

A. Answers To Self-Assessment Tests.
B. Atomic Weights and Numbers.
C. Table of the Pitzer Z0 and Z1 Factors.
D. Physical Properties of Various Organic and Inorganic Substances.
E. Heat Capacity Equations.
F. Heats of Formation and Combustion.
G. Vapor Pressures.
H. Heats of Solution and Dilution.
I. Enthalpy-Concentration Data.
J. Thermodynamic Charts.
K. Physical Properties of Petroleum Fractions.
L. Solution of Sets of Equations.
M. Fitting Functions to Data.
N. Answers to Selected Problems.
Index.

Back Cover

Chemical engineering principles and techniques: A practical and up-to-date introduction.

The scope of chemical engineering has expanded considerably in recent years to encompass a wide range of topics. This book provides a complete, practical, and student-friendly introduction to the principles and techniques of contemporary chemical, petroleum, and environmental engineering.

The authors introduce efficient and consistent methods for problem solving, analyzing data, and developing a conceptual understanding of a wide variety of processes. This seventh edition is revised to reflect the latest technologies and educational strategies that develop a student's abilities for reasoning and critical thinking.

Coverage includes:

  • Short chapters (29) to provide a flexible modular sequence of topics for courses of varying length
  • A thorough coverage of introductory material, including unit conversions, basis selection, and process measurements
  • Consistent, sound strategies for solving material and energy balance problems
  • Key concepts ranging from stoichiometry to enthalpy
  • Behavior of gases, liquids, and solids: ideal/real gases, single component two-phase systems, gas-liquid systems, and more
  • New examples and problems covering environmental, safety, semiconductor processing, nanotechnology, and biotechnology
  • Extensive tables and charts, plus glossaries in every chapter
  • Self-assessment tests, thought/discussion problems, and homework problems for each chapter
  • 13 appendices providing helpful reference information

Practically orientated and student friendly, Basic Principles and Calculations in Chemical Engineering, Seventh Edition is the definitive chemical engineering introduction for students, license candidates, practicing engineers, and scientists.

CD-ROM INCLUDED

  • UPDATED Polymath software for solving linear/nonlinear/differential equations and regression problems
  • NEW physical property database containing over 740 compounds available in a very convenient "point-and-click" format for Windows®
  • 200 supplementary problems, 100 with detailed solutions
  • Descriptions and animations of process equipment
  • Chapters on degrees of freedom, process simulation, and unsteady state materials
  • A chapter on advice to the novice on problem solving

Author

DAVID M. HIMMELBLAU is Paul D. & Betty Robertson Meek and American Petrofina Foundation Centennial Professor in Chemical Engineering at the University of Texas, Austin. He is author of sixteen books.

JAMES B. RIGGS, Professor in the Chemical Engineering Department at Texas Tech University, directs the Texas Tech Process Control and Optimization Consortium. His books include Chemical Process Control, Second Edition and An Introduction to Numerical Methods for Chemical Engineers, Second Edition.