- Series
- Prentice Hall
- Author
- Joseph W. Tedesco / William G. McDougal / C. Allen Ross
- Publisher
- Pearson
- Cover
- Softcover
- Edition
- 1
- Language
- English
- Total pages
- 816
- Pub.-date
- December 1998
- ISBN13
- 9780673980526
- ISBN
- 0673980529
- Related Titles

ISBN | Product | Product | Price CHF | Available | |
---|---|---|---|---|---|

Structural Dynamics |
9780673980526 Structural Dynamics |
214.30 | approx. 7-9 days |

This book provides engineering students with an understanding of the dynamic response of structures and the analytical tools to determine such responses. This comprehensive text demonstrates how modern theories and solution techniques can be applied to a large variety of practical, real-world problems. As computers play a more significant role in this field, the authors emphasize discrete methods of analysis and numerical solution techniques throughout the text.

- Covers a wide range of topics with practical applications.

- Provides comprehensive treatment of discrete methods of analysis.

- Emphasizes the mathematical modeling of structures.

- Includes principles and solution techniques of relevance to engineering mechanics, civil, mechanical, and aerospace engineering.

**1. Basic Concepts.**

**I. SINGLE-DEGREE-OF-FREEDOM (SDOF) SYSTEMS.**

Fundamental Components of a Vibrating System. D'Alembert's Principle of Dynamic Equilibrium. The Energy Method. The Principle of Virtual Displacements. References. Notation. Problems.

Simple Harmonic Motion. Interpretation of the Solution. Equivalent Stiffness. Rayleigh Method. References. Notation. Problems.

Free Vibration with Viscous Damping. Logarithmic Decrement. Hysteresis Damping. Coulomb Damping. References. Notation. Problems.

Forced Harmonic Response of Undamped Systems. Beating and Resonance. Forced Harmonic Vibrations with Viscous Damping. Effect of Damping Factor on Steady-State Response and Phase Angle. Harmonic Excitation Caused by Rotating Unbalance. Base Excitation. Vibration Isolation and Transmissibility. References. Notation. Problems.

Response to Periodic Excitation. Response to Unit Impulse. Duhamel Integral. Response to Arbitrary Dynamic Excitation. Response Spectrum. References. Notation. Problems.

Interpolation of the Excitation. Direct Integration of the Equation of Motion. Central Difference Method. Runge-Kutta Methods. Average Acceleration Method. Linear Acceleration Method. Response to Base Excitation. Response Spectra by Numerical Integration. References. Notation. Problems.

Alternative Forms of the Fourier Series. Discrete Fourier Transform. Fast Fourier Transform. Discrete Fourier Transform Implementation Considerations. Fourier Integral. References. Notation. Problems.

**II. MULTI-DEGREE-OF-FREEDOM (MDOF) SYSTEMS.**

Flexibility Matrix. Stiffness Matrix. Inertia Properties: Mass Matrix. The Eigenproblem in Vibration Analysis. Static Condensation of the Stiffness Matrix. References. Notation. Problems.

Hamilton's Principle and the Lagrange Equations. Natural Vibration Frequencies. Natural Vibration Modes. Orthogonality of Natural Modes. Systems Admitting Rigid-Body Modes. Generalized Mass and Stiffness Matrices. Free Vibration Response to Initial Conditions. Approximate Methods for Estimating the Fundamental Frequency. References. Notation. Problems.

General Solution Methods for Eigenproblems. Inverse Vector Iteration. Forward Vector Iteration. Generalized Jacobi Method. Solution Methods for Large Eigenproblems References. Notation. Problems.

Mode Displacement Method for Undamped Systems. Modal Participation Factor. Mode Superposition Solution for Systems with Classical Damping. Numerical Evaluation of Modal Response. Normal Mode Response to Support Motions. Response Spectrum Analysis. Mode Acceleration Method. References. Notation. Problems.

Basic Concepts of Direct Integration Methods. The Central Difference Method. The Wilson-u Method. The Newmark Method. Practical Considerations for Damping. Stability and Accuracy of Direct Integration Methods. Direct Integration versus Mode Superposition. References. Notation. Problems.

**III. CONTINUOUS SYSTEMS.**

Longitudinal Vibration of a Uniform Rod. Transverse Vibration of a Pretensioned Cable. Free Transverse Vibration of Uniform Beams. Orthogonality of Normal Modes. Undamped Forced Vibration of Beams by Mode Superposition. Approximate Methods. References. Notation. Problems.

**IV. NONLINEAR DYNAMIC RESPONSE.**

Classification of Nonlinear Analyses. Systems with Nonlinear Characteristics. Formulation of Incremental Equations of Equilibrium. Numerical Solution of Nonlinear Equilibrium Equations. Response of Elastoplastic SDOF Systems. Response of Elastoplastic MDOF Systems. References. Notation. Problems.

**V. PRACTICAL APPLICATIONS.**

Stress and Strain at a Point. Constitutive Relations. Equations of Motion. Stress Wave Propagation. Applications. References. Notation. Problems.

Causes of Earthquakes. Faults. Seismic Waves. Earthquake Intensity. Earthquake Magnitude. Seismicity. Earthquake Ground Motion. Earthquake Damage Mechanisms. References. Notation.

Time-History Analysis: Basic Concepts. Earthquake Response Spectra. Earthquake Design Spectra. Response of MDOF Systems. Generalized SDOF Systems. In-Building Response Spectrum. Inelastic Response. Seismic Design Codes. References. Notation. Problems.

Sources of Blast Loads. Shock Waves. Determination of Blast Loads. Strain-Rate Effects. Approximate Solution Technique for SDOF Systems. References. Problems. Notations.

Linear Wave Theory. Nonlinear Waves. Wave Transformations. Wave Statistics. Wave Information Damping. References. Notation. Problems.

Morison Equation. Force Coefficients. Linearized Morison Equation. Inclined Cylinders. Transverse Lift Forces. Froude-Krylov Theory. Diffraction Theory: The Scattering Problem. Diffraction Theory: The Radiation Problem. References. Notation. Problems.

This book provides engineering students with an understanding of the dynamic response of structures and the analytical tools to determine such responses. This comprehensive text demonstrates how modern theories and solution techniques can be applied to a large variety of practical, real-world problems. As computers play a more significant role in this field, the authors emphasize discrete methods of analysis and numerical solution techniques throughout the text.

- Covers a wide range of topics with practical applications
- Provides comprehensive treatment of discrete methods of analysis
- Emphasizes the mathematical modeling of structures
- Includes principles and solution techniques of relevance to engineering mechanics, civil, mechanical, and aerospace engineering

**C. Allen Ross** is Emeritus Professor of the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida, and is a faculty member at the Graduate Engineering Research Center, Shalimar, Florida. Dr. Ross is a Registered Professional Engineer with the State of Florida and has thirty-eight years of teaching and research experience with the University of Florida. He serves on a number of professional committees and is an Associate Fellow of AIAA.