Modern Operating Systems: Global Edition

Series
Pearson
Author
Andrew S. Tanenbaum / Herbert Bos  
Publisher
Pearson
Cover
Softcover
Edition
4
Language
English
Total pages
1136
Pub.-date
September 2014
ISBN13
9781292061429
ISBN
1292061421
Related Titles


Product detail

Product Price CHF Available  
9781292061429
Modern Operating Systems: Global Edition
90.30

eBook

You'll find the eBook here.:

Free evaluation copy for lecturers


Description

Modern Operating Systems, Fourth Edition, is intended for introductory courses in Operating Systems in Computer Science, Computer Engineering, and Electrical Engineering programs.

 

The widely anticipated revision of this worldwide best-seller incorporates the latest developments in operating systems (OS) technologies. The Fourth Edition includes up-to-date materials on relevant OS. Tanenbaum also provides information on current research based on his experience as an operating systems researcher.

 

Modern Operating Systems, Third Edition was the recipient of the 2010 McGuffey Longevity Award. The McGuffey Longevity Award recognizes textbooks whose excellence has been demonstrated over time. http://taaonline.net/index.html

  

Teaching and Learning Experience

This program will provide a better teaching and learning experience–for you and your students. It will help:

 

  • Provide Practical Detail on the Big Picture Concepts: A clear and entertaining writing style outlines the concepts every OS designer needs to master.
  • Keep Your Course Current: This edition includes information on the latest OS technologies and developments
  • Enhance Learning with Student and Instructor Resources: Students will gain hands-on experience using the simulation exercises and lab experiments.

Features

Provide Practical Detail on the Big Picture Concepts

A clear and entertaining writing style outlines the concepts every OS designer needs to master.

  • In-depth topic coverage includes processes, threads, memory management, file systems, I/O, deadlocks, interface design, multimedia, performance tradeoffs, and the newest trends in OS design. 
  • Multimedia file systems are covered–an important topic that most books miss. The chapter on Multimedia Operating Systems has been moved to the Web, primarily to make room for new material and keep the book from growing to a completely unmanageable size.
  • A thorough treatment of computer security includes viruses, worms, malware and other digital pests. This chapter far exceeds anything written in any other book. It also discusses ways to combat them.

 

Keep Your Course Current

  • Coverage of multiprocessors, multicomputers, virtual machines, and distributed systems reflects that the field is rapidly moving from an era of single-processor systems to multicore systems, multiprocessors, and distributed systems.
  • Case studies of popular operating systems: UNIX, Linux, Windows 8, and Android
    • NEW: Chapter 10, on UNIX, Linux, and Android is a revision of the old Chapter 10. The focus is clearly on Linux now, with a great deal of new material about Android, which was not in the previous edition.
    • NEW: Chapter 11 in the third edition was on Windows Vista. A chapter on Windows 8, specifically Windows 8.1, has replaced that. It brings the treatment of Windows completely up to date.
  • NEW and UPDATED: Chapters 2—6 have been updated, with older material removed and some new material added.
    • Chapter 2: Added information on the futex synchronization primitive, and a section about how to avoid locking altogether with Read-Copy-Update.
    • Chapter 3: More focus on modern hardware and less emphasis on segmentation and Multics.
    • Chapter 4: CD-Roms are removed, as they are no longer very common, and replaced with more modern solutions (like flash drives). Also, we added RAID level 6 to the section on RAID.
    • Chapter 5: Older devices like CRT and CD-ROMs have been removed, while new technology, like touch screens have been added. The sections on current research in these chapters have been rewritten from scratch. New problems and programming exercises have been added.
  • NEW: Chapter 7 is completely new. It covers the important topics of virtualization and the cloud.
  • NEW and UPDATED: Chapter 8 is an updated version of the previous material on multiprocessor systems. There is more emphasis on multicore systems now, which have become so important in the past few years. A long section on VMware has been added.
  • NEW and UPDATED: Chapter 9 has been heavily revised and reorganized, with considerable new material on exploiting code bugs, malware, and defenses against them.
  • UPDATED: Chapter 12 is a revised version of Chap. 13 from the previous edition.
  • A Research section in many chapters describes current research in the topic covered by the chapter.

 

Enhance Learning with Student and Instructor Resources

  • Online Exercises provide hands-on experience with building as well as analyzing the performance of OS. In particular, these exercises have been designed to provide experience with analyzing the resource consumptions in Windows and Linux.
  • Simulation Exercises are designed to provide experience with building some key components of an OS, including process scheduling, main memory allocation, paging algorithms and virtual memory, and file systems.
  • Student Tools and Lab Experiments allow students to download the tools and run the experiments to gain deeper knowledge of the subject.

 

Password-Protected Instructor Resources (Select the Resources Tab to View Downloadable Files):

  • Power Point Lecture Slides
  • Figures in both .jpeg and .eps file format
  • Solutions to Exercises


New to this Edition

Keep Your Course Current

 

  • Chapter 1 has been heavily modified and updated in many places but with the exception of a new section on mobile computers, no major sections have been added or deleted.
  • Chapters 2—6 have been updated, with older material removed and some new material added.
    • Chapter 2: Added information on the futex synchronization primitive, and a section about how to avoid locking altogether with Read-Copy-Update.
    • Chapter 3: More focus on modern hardware and less emphasis on segmentation and Multics.
    • Chapter 4: CD-Roms are removed, as they are no longer very common, and replaced with more modern solutions (like flash drives). Also, we added RAID level 6 to the section on RAID.
    • Chapter 5: Older devices like CRT and CD-ROMs have been removed, while new technology, like touch screens have been added. The sections on current research in these chapters have been rewritten from scratch. New problems and programming exercises have been added.
  • Chapter 7 is completely new. It covers the important topics of virtualization and the cloud.
  • Chapter 8 is an updated version of the previous material on multiprocessor systems. There is more emphasis on multicore systems now, which have become so important in the past few years. A long section on VMware has been added.
  • Chapter 9 has been heavily revised and reorganized, with considerable new material on exploiting code bugs, malware, and defenses against them.
  • Chapter 10, on UNIX, Linux, and Android is a revision of the old Chapter 10. The focus is clearly on Linux now, with a great deal of new material about Android, which was not in the previous edition.
  • Chapter 11 in the third edition was on Windows Vista. A chapter on Windows 8, specifically Windows 8.1, has replaced that. It brings the treatment of Windows completely up to date.
  • Chapter 12 is a revised version of Chap. 13 from the previous edition.


Table of Contents

CHAPTER 1 "INTRODUCTION"

    1.1    WHAT IS AN OPERATING SYSTEM?   3
    1.1.1  The Operating System as an Extended Machine   4
    1.1.2  The Operating System as a Resource Manager   5

    1.2    HISTORY OF OPERATING SYSTEMS   6
    1.2.1  The First Generation (1945-55): Vacuum Tubes   7
    1.2.2  The Second Generation (1955-65): Transistors and Batch Systems 8
    1.2.3  The Third Generation (1965-1980): ICs and Multiprogramming   9
    1.2.4  The Fourth Generation (1980-Present): Personal Computers   15
    1.2.5  The Fifth Generation (1990-Present): Mobile Computers   19

    1.3    COMPUTER HARDWARE REVIEW   20
    1.3.1  Processors   21
    1.3.2  Memory   24
    1.3.3  Disks   27
    1.3.4  I/O Devices   28
    1.3.5  Buses   32
    1.3.6  Booting the Computer   34

    1.4    THE OPERATING SYSTEM ZOO   35
    1.4.1  Mainframe Operating Systems   35
    1.4.2  Server Operating Systems   35
    1.4.3  Multiprocessor Operating Systems   36
    1.4.4  Personal Computer Operating Systems   36
    1.4.5  Handheld Computer Operating Systems   36
    1.4.6  Embedded Operating Systems.   37
    1.4.7  Sensor-Node Operating Systems   37
    1.4.8  Real-Time Operating Systems   37
    1.4.9  Smart Card Operating Systems   38

    1.5    OPERATING SYSTEM CONCEPTS   38
    1.5.1  Processes   39
    1.5.2  Address Spaces   41
    1.5.3  Files   41
    1.5.4  Input/Output   45
    1.5.5  Protection   45
    1.5.6  The Shell   45
    1.5.7  Ontogeny Recapitulates Phylogeny   47

    1.6    SYSTEM CALLS   50
    1.6.1  System Calls for Process Management   53
    1.6.2  System Calls for File Management   56
    1.6.3  System Calls for Directory Management   57
    1.6.4  Miscellaneous System Calls   59
    1.6.5  The Windows Win32 API   60

    1.7    OPERATING SYSTEM STRUCTURE   62
    1.7.1  Monolithic Systems   63
    1.7.2  Layered Systems   64
    1.7.3  Microkernels   65
    1.7.4  Client-Server Model   68
    1.7.5  Virtual Machines   69
    1.7.6  Exokernels   73

    1.8    THE WORLD ACCORDING TO C   73
    1.8.1  The C Language   73
    1.8.2  Header Files   74
    1.8.3  Large Programming Projects   75
    1.8.4  The Model of Run Time   76

    1.9    RESEARCH ON OPERATING SYSTEMS   77

    1.10    OUTLINE OF THE REST OF THIS BOOK   78

    1.11    METRIC UNITS   79

    1.12    SUMMARY   80

CHAPTER 2 "PROCESSES AND THREADS"

    2.1    PROCESSES   85
    2.1.1  The Process Model   86
    2.1.2  Process Creation   88
    2.1.3  Process Termination   90
    2.1.4  Process Hierarchies   91
    2.1.5  Process States   92
    2.1.6  Implementation of Processes   94
    2.1.7  Modeling Multiprogramming   95

    2.2    THREADS   97
    2.2.1  Thread Usage   97
    2.2.2  The Classical Thread Model   102
    2.2.3  POSIX Threads   106
    2.2.4  Implementing Threads in User Space   108
    2.2.5  Implementing Threads in the Kernel   111
    2.2.6  Hybrid Implementations   112
    2.2.7  Scheduler Activations   113
    2.2.8  Pop-Up Threads   114
    2.2.9  Making Single-Threaded Code Multithreaded   116

    2.3    INTERPROCESS COMMUNICATION   119
    2.3.1  Race Conditions   119
    2.3.2  Critical Regions   121
    2.3.3  Mutual Exclusion with Busy Waiting   122
    2.3.4  Sleep and Wakeup   127
    2.3.5  Semaphores   130
    2.3.6  Mutexes   132
    2.3.7  Monitors   137
    2.3.8  Message Passing   144
    2.3.9  Barriers   146
    2.3.10  Avoiding Locks: Read-Copy-Update   148

    2.4    SCHEDULING   149
    2.4.1  Introduction to Scheduling   150
    2.4.2  Scheduling in Batch Systems   156
    2.4.3  Scheduling in Interactive Systems   158
    2.4.4  Scheduling in Real-Time Systems   164
    2.4.5  Policy Versus Mechanism   165
    2.4.6  Thread Scheduling   166

    2.5    CLASSICAL IPC PROBLEMS   167
    2.5.1  The Dining Philosophers Problem   167
    2.5.2  The Readers and Writers Problem   171

    2.6    RESEARCH ON PROCESSES AND THREADS   172

    2.7    SUMMARY   173

CHAPTER 3 "MEMORY MANAGEMENT"

    3.1    NO MEMORY ABSTRACTION   182

    3.2    A MEMORY ABSTRACTION: ADDRESS SPACES   185
    3.2.1  The Notion of an Address Space   186
    3.2.2  Swapping   187
    3.2.3  Managing Free Memory   190

    3.3    VIRTUAL MEMORY   194
    3.3.1  Paging   195
    3.3.2  Page Tables   198
    3.3.3  Speeding Up Paging   201
    3.3.4  Page Tables for Large Memories   205

    3.4    PAGE REPLACEMENT ALGORITHMS   209
    3.4.1  The Optimal Page Replacement Algorithm   209
    3.4.2  The Not Recently Used Page Replacement Algorithm   210
    3.4.3  The First-In, First-Out (FIFO) Page Replacement Algorithm   211
    3.4.4  The Second-Chance Page Replacement Algorithm   212
    3.4.5  The Clock Page Replacement Algorithm   212
    3.4.6  The Least Recently Used (LRU) Page Replacement Algorithm   213
    3.4.7  Simulating LRU in Software   214
    3.4.8  The Working Set Page Replacement Algorithm   215
    3.4.9  The WSClock Page Replacement Algorithm   219
    3.4.10  Summary of Page Replacement Algorithms   221

    3.5    DESIGN ISSUES FOR PAGING SYSTEMS   222
    3.5.1  Local versus Global Allocation Policies   222
    3.5.2  Load Control   225
    3.5.3  Page Size   225
    3.5.4  Separate Instruction and Data Spaces   227
    3.5.5  Shared Pages   228
    3.5.6  Shared Libraries   229
    3.5.7  Mapped Files   231
    3.5.8  Cleaning Policy   232
    3.5.9  Virtual Memory Interface   232

    3.6    IMPLEMENTATION ISSUES   233
    3.6.1  Operating System Involvement with Paging   233
    3.6.2  Page Fault Handling   234
    3.6.3  Instruction Backup   235
    3.6.4  Locking Pages in Memory   237
    3.6.5  Backing Store   237
    3.6.6  Separation of Policy and Mechanism   239

    3.7    SEGMENTATION   240
    3.7.1  Implementation of Pure Segmentation   243
    3.7.2  Segmentation with Paging: MULTICS   243
    3.7.3  Segmentation with Paging: The Intel x86   247

    3.8    RESEARCH ON MEMORY MANAGEMENT   252

    3.9    SUMMARY   253

CHAPTER 4 "FILE SYSTEMS"

    4.1    FILES
    4.1.1  File Naming
    4.1.2  File Structure
    4.1.3  File Types
    4.1.4  File Access
    4.1.5  File Attributes
    4.1.6  File Operations
    4.1.7  An Example Program Using File-System Calls

    4.2    DIRECTORIES
    4.2.1  Single-Level Directory Systems
    4.2.2  Hierarchical Directory Systems
    4.2.3  Path Names
    4.2.4  Directory Operations

    4.3    FILE SYSTEM IMPLEMENTATION
    4.3.1  File-System Layout
    4.3.2  Implementing Files
    4.3.3  Implementing Directories
    4.3.4  Shared Files
    4.3.5  Log-Structured File Systems
    4.3.6  Journaling File Systems
    4.3.7  Virtual File Systems

    4.4    FILE-SYSTEM MANAGEMENT AND OPTIMIZATION
    4.4.1  Disk-Space Management
    4.4.2  File-System Backups
    4.4.3  File-System Consistency
    4.4.4  File-System Performance
    4.4.5  Defragmenting Disks

    4.5    EXAMPLE FILE SYSTEMS
    4.5.1  The MS-DOS File System
    4.5.2  The UNIX V7 File System
    4.5.3  CD-ROM File Systems

    4.6    RESEARCH ON FILE SYSTEMS

    4.7    SUMMARY

CHAPTER 5 "INPUT/OUTPUT"

    5.1    PRINCIPLES OF I/O HARDWARE
    5.1.1  I/O Devices
    5.1.2  Device Controllers
    5.1.3  Memory-Mapped I/O
    5.1.4  Direct Memory Access
    5.1.5  Interrupts Revisited

    5.2    PRINCIPLES OF I/O SOFTWARE
    5.2.1  Goals of the I/O Software
    5.2.2  Programmed I/O
    5.2.3  Interrupt-Driven I/O
    5.2.4  I/O Using DMA

    5.3    I/O SOFTWARE LAYERS
    5.3.1  Interrupt Handlers
    5.3.2  Device Drivers
    5.3.3  Device-Independent I/O Software
    5.3.4  User-Space I/O Software

    5.4    DISKS
    5.4.1  Disk Hardware
    5.4.2  Disk Formatting
    5.4.3  Disk Arm Scheduling Algorithms
    5.4.4  Error Handling
    5.4.5  Stable Storage

    5.5    CLOCKS
    5.5.1  Clock Hardware
    5.5.2  Clock Software
    5.5.3  Soft Timers

    5.6    USER INTERFACES: KEYBOARD, MOUSE, MONITOR
    5.6.1  Input Software
    5.6.2  Output Software

    5.7    THIN CLIENTS

    5.8    POWER MANAGEMENT
    5.8.1  Hardware Issues
    5.8.2  Operating System Issues
    5.8.3  Application Program Issues

    5.9    RESEARCH ON INPUT/OUTPUT

    5.10    SUMMARY

CHAPTER 6 "DEADLOCKS"

    6.1    RESOURCES
    6.1.1  Preemptable and Nonpreemptable Resources
    6.1.2  Resource Acquisition

    6.2    INTRODUCTION TO DEADLOCKS
    6.2.1  Conditions for Resource Deadlocks
    6.2.2  Deadlock Modeling

    6.3    THE OSTRICH ALGORITHM

    6.4    DEADLOCK DETECTION AND RECOVERY
    6.4.1  Deadlock Detection with One Resource of Each Type
    6.4.2  Deadlock Detection with Multiple Resources of Each Type
    6.4.3  Recovery from Deadlock

    6.5    DEADLOCK AVOIDANCE
    6.5.1  Resource Trajectories
    6.5.2  Safe and Unsafe States
    6.5.3  The Banker's Algorithm for a Single Resource
    6.5.4  The Banker's Algorithm for Multiple Resources

    6.6    DEADLOCK PREVENTION
    6.6.1  Attacking the Mutual Exclusion Condition
    6.6.2  Attacking the Hold and Wait Condition
    6.6.3  Attacking the No Preemption Condition
    6.6.4  Attacking the Circular Wait Condition

    6.7    OTHER ISSUES
    6.7.1  Two-Phase Locking
    6.7.2  Communication Deadlocks
    6.7.3  Livelock
    6.7.4  Starvation

    6.8    RESEARCH ON DEADLOCKS

    6.9    SUMMARY

CHAPTER 7 "VIRTUALIZATION AND THE CLOUD"

    7.1    HISTORY

    7.2    REQUIREMENTS FOR VIRTUALIZATION

    7.3    TYPE 1 AND TYPE 2 HYPERVISORS

    7.4    TECHNIQUES FOR EFFICIENT VIRTUALIZATION
    7.4.1  Virtualizing the Unvirtualizable
    7.4.2  The Cost of Virtualization

    7.5    ARE HYPERVISORS MICROKERNELS DONE RIGHT?

    7.6    MEMORY VIRTUALIZATION

    7.7    I/O VIRTUALIZATION

    7.8    VIRTUAL APPLIANCES

    7.9    VIRTUAL MACHINES ON MULTICORE CPUS

    7.10    LICENSING ISSUES

    7.11    CLOUDS
    7.11.1  Clouds as a Service
    7.11.2  Virtual Machine Migration
    7.11.3  Checkpointing

    7.12    CASE STUDY: VMWARE
    7.12.1  The early history of VMware
    7.12.2  VMware Workstation
    7.12.3  Challenges in Bringing Virtualization to the x86
    7.12.4  VMware Workstation: Solution Overview
    7.12.5  The Evolution of VMware Workstation
    7.12.6  ESX Server: VMware's type-1 hypervisor

    7.13    RESEARCH ON VIRTUALIZATION AND THE CLOUD

CHAPTER 8 "MULTIPLE PROCESSOR SYSTEMS"

    8.1    MULTIPROCESSORS
    8.1.1  Multiprocessor Hardware
    8.1.2  Multiprocessor Operating System Types
    8.1.3  Multiprocessor Synchronization
    8.1.4  Multiprocessor Scheduling

    8.2    MULTICOMPUTERS
    8.2.1  Multicomputer Hardware
    8.2.2  Low-Level Communication Software
    8.2.3  User-Level Communication Software
    8.2.4  Remote Procedure Call
    8.2.5  Distributed Shared Memory
    8.2.6  Multicomputer Scheduling
    8.2.7  Load Balancing

    8.3    DISTRIBUTED SYSTEMS
    8.3.1  Network Hardware
    8.3.2  Network Services and Protocols
    8.3.3  Document-Based Middleware
    8.3.4  File-System-Based Middleware
    8.3.5  Object-Based Middleware
    8.3.6  Coordination-Based Middleware

    8.4    RESEARCH ON MULTIPLE PROCESSOR SYSTEMS

    8.5    SUMMARY

CHAPTER 9 "SECURITY"

    9.1    THE SECURITY ENVIRONMENT
    9.1.1  Threats
    9.1.2  Attackers

    9.2    OPERATING SYSTEMS SECURITY
    9.2.1  Can We Build Secure Systems?
    9.2.2  Trusted Computing Base

    9.3    CONTROLLING ACCESS TO RESOURCES
    9.3.1  Protection Domains
    9.3.2  Access Control Lists
    9.3.3  Capabilities

    9.4    FORMAL MODELS OF SECURE SYSTEMS
    9.4.1  Multilevel Security
    9.4.2  Covert Channels

    9.5    BASICS OF CRYPTOGRAPHY
    9.5.1  Secret-Key Cryptography
    9.5.2  Public-Key Cryptography
    9.5.3  One-Way Functions
    9.5.4  Digital Signatures
    9.5.5  Trusted Platform Module

    9.6    AUTHENTICATION
    9.6.1  Authentication Using a Physical Object
    9.6.2  Authentication Using Biometrics

    9.7    EXPLOITING SOFTWARE
    9.7.1  Buffer Overflow Attacks
    9.7.2  Format String Attacks
    9.7.3  Dangling Pointers
    9.7.4  Null Pointer Dereference Attacks
    9.7.5  Integer Overflow Attacks
    9.7.6  Command Injection Attacks
    9.7.7  Time of Check to Time of Use (TOCTOU) Attacks

    9.8    INSIDER ATTACKS
    9.8.1  Logic Bombs
    9.8.2  Back Doors
    9.8.3  Login Spoofing

    9.9    MALWARE
    9.9.1  Trojan Horses
    9.9.2  Viruses
    9.9.3  Worms
    9.9.4  Spyware
    9.9.5  Rootkits

    9.10    DEFENSES
    9.10.1  Firewalls
    9.10.2  Antivirus and Anti-Antivirus Techniques
    9.10.3  Code Signing
    9.10.4  Jailing
    9.10.5  Model-Based Intrusion Detection
    9.10.6  Encapsulating Mobile Code
    9.10.7  Java Security

    9.11    RESEARCH ON SECURITY

    9.12    SUMMARY

CHAPTER 10 "CASE STUDY 1: UNIX, LINUX, AND ANDROID"

    10.1    HISTORY OF UNIX AND LINUX
    10.1.1  UNICS
    10.1.2  PDP-11 UNIX
    10.1.3  Portable UNIX
    10.1.4  Berkeley UNIX
    10.1.5  Standard UNIX
    10.1.6  MINIX
    10.1.7  Linux

    10.2    OVERVIEW OF LINUX
    10.2.1  Linux Goals
    10.2.2  Interfaces to Linux
    10.2.3  The Shell
    10.2.4  Linux Utility Programs
    10.2.5  Kernel Structure

    10.3    PROCESSES IN LINUX
    10.3.1  Fundamental Concepts
    10.3.2  Process Management System Calls in Linux
    10.3.3  Implementation of Processes and Threads in Linux
    10.3.4  Scheduling in Linux
    10.3.5  Booting Linux

    10.4    MEMORY MANAGEMENT IN LINUX
    10.4.1  Fundamental Concepts
    10.4.2  Memory Management System Calls in Linux
    10.4.3  Implementation of Memory Management in Linux
    10.4.4  Paging in Linux

    10.5    INPUT/OUTPUT IN LINUX
    10.5.1  Fundamental Concepts
    10.5.2  Networking
    10.5.3  Input/Output System Calls in Linux
    10.5.4  Implementation of Input/Output in Linux
    10.5.5  Modules in Linux

    10.6    THE LINUX FILE SYSTEM
    10.6.1  Fundamental Concepts
    10.6.2  File System Calls in Linux
    10.6.3  Implementation of the Linux File System
    10.6.4  NFS: The Network File System

    10.7    SECURITY IN LINUX
    10.7.1  Fundamental Concepts
    10.7.2  Security System Calls in Linux
    10.7.3  Implementation of Security in Linux

    10.8    ANDROID

    10.9    SUMMARY

CHAPTER 11 "CASE STUDY 2: WINDOWS 8"

    11.1    HISTORY OF WINDOWS THROUGH WINDOWS 8.1
    11.1.1  1980s: MS-DOS
    11.1.2  1990s: MS-DOS-based Windows
    11.1.3  2000s: NT-based Windows
    11.1.4  Windows Vista
    11.1.5  2010s: Modern Windows

    11.2    PROGRAMMING WINDOWS
    11.2.1  The Native NT Application Programming Interface
    11.2.2  The Win32 Application Programming Interface
    11.2.3  The Windows Registry

    11.3    SYSTEM STRUCTURE
    11.3.1  Operating System Structure
    11.3.2  Booting Windows
    11.3.3  Implementation of the Object Manager
    11.3.4  Subsystems, DLLs, and User-Mode Services

    11.4    PROCESSES AND THREADS IN WINDOWS
    11.4.1  Fundamental Concepts
    11.4.2  Job, Process, Thread, and Fiber Management API Calls
    11.4.3  Implementation of Processes and Threads

    11.5    MEMORY MANAGEMENT
    11.5.1  Fundamental Concepts
    11.5.2  Memory Management System Calls
    11.5.3  Implementation of Memory Management

    11.6    CACHING IN WINDOWS

    11.7    INPUT/OUTPUT IN WINDOWS
    11.7.1  Fundamental Concepts
    11.7.2  Input/Output API Calls
    11.7.3  Implementation of I/O

    11.8    THE WINDOWS NT FILE SYSTEM
    11.8.1  Fundamental Concepts
    11.8.2  Implementation of the NT File System

    11.9    WINDOWS POWER MANAGEMENT

    11.10    SECURITY IN WINDOWS 8
    11.10.1  Fundamental Concepts
    11.10.2  Security API Calls
    11.10.3  Implementation of Security
    11.10.4  Security Mitigations

    11.11    SUMMARY

CHAPTER 13 "OPERATING SYSTEM DESIGN"

    13.1    THE NATURE OF THE DESIGN PROBLEM
    13.1.1  Goals
    13.1.2  Why Is It Hard to Design an Operating System?

    13.2    INTERFACE DESIGN
    13.2.1  Guiding Principles
    13.2.2  Paradigms
    13.2.3  The System Call Interface

    13.3    IMPLEMENTATION
    13.3.1  System Structure
    13.3.2  Mechanism versus Policy
    13.3.3  Orthogonality
    13.3.4  Naming
    13.3.5  Binding Time
    13.3.6  Static versus Dynamic Structures
    13.3.7  Top-Down versus Bottom-Up Implementation
    13.3.8  Useful Techniques

    13.4    PERFORMANCE
    13.4.1  Why Are Operating Systems Slow?
    13.4.2  What Should Be Optimized?
    13.4.3  Space-Time Trade-offs
    13.4.4  Caching
    13.4.5  Hints
    13.4.6  Exploiting Locality
    13.4.7  Optimize the Common Case

    13.5    PROJECT MANAGEMENT
    13.5.1  The Mythical Man Month
    13.5.2  Team Structure
    13.5.3  The Role of Experience
    13.5.4  No Silver Bullet

    13.6    TRENDS IN OPERATING SYSTEM DESIGN
    13.6.1  Virtualization
    13.6.2  Multicore Chips
    13.6.3  Large Address Space Operating Systems
    13.6.4  Networking
    13.6.5  Parallel and Distributed Systems
    13.6.6  Multimedia
    13.6.7  Battery-Powered Computers
    13.6.8  Embedded Systems
    13.6.9  Sensor Nodes

    13.7    SUMMARY

CHAPTER 14 "READING LIST AND BIBLIOGRAPHY"

    14.1    SUGGESTIONS FOR FURTHER READING
    14.1.1  Introduction and General Works
    14.1.2  Processes and Threads
    14.1.3  Memory Management
    14.1.4  Input/Output
    14.1.5  File Systems
    14.1.6  Deadlocks
    14.1.7  Virtualization and the CLoud
    14.1.8  Multiple Processor Systems
    14.1.9  Security
    14.1.10  UNIX, Linux, and Android
    14.1.11  Windows 8
    14.1.12  Design Principles

    14.2    ALPHABETICAL BIBLIOGRAPHY