Database Systems: Pearson New International Edition

Series
Pearson
Author
Hector Garcia-Molina / Jeffrey D. Ullman / Jennifer Widom  
Publisher
Pearson
Cover
Softcover
Edition
2
Language
English
Total pages
1137
Pub.-date
July 2013
ISBN13
9781292024479
ISBN
129202447X
Related Titles


Product detail

Product Price CHF Available  
9781292024479
Database Systems: Pearson New International Edition
88.90

eBook

You'll find the eBook here.:

Free evaluation copy for lecturers


Description

For Database Systems and Database Design and Application courses offered at the junior, senior and graduate levels in Computer Science departments.

 


Written by well-known computer scientists, this introduction to database systems offers a comprehensive approach, focusing on database design, database use, and implementation of database applications and database management systems.

The first half of the book provides in-depth coverage of databases from the point of view of the database designer, user, and application programmer. It covers the latest database standards SQL:1999, SQL/PSM, SQL/CLI, JDBC, ODL, and XML, with broader coverage of SQL than most other texts. The second half of the book provides in-depth coverage of databases from the point of view of the DBMS implementor. It focuses on storage structures, query processing, and transaction management. The book covers the main techniques in these areas with broader coverage of query optimization than most other texts, along with advanced topics including multidimensional and bitmap indexes, distributed transactions, and information integration techniques.

 

Resources:

  • Open access Author Website ¿http://infolab.stanford.edu/~ullman/dscb.html¿includes Power Point slides, teaching notes, assignments, projects, Oracle Programming Guidelines, and solutions to selected exercises.
  • Instructor only Pearson Resources: Complete Solutions Manual (click on the Resources tab above to view downloadable files)

Features

  • Many real-world examples.
    • Offers a readable and engaging presentation.

  • Extensive treatment of database modeling–Includes detailed and separate explanations of how to use E/R and ODL to design databases.
    • Teaches about this important first step of the planning process.

  • Excellent, up-to-date and detailed coverage of SQL–Includes coverage of object-relational systems and many aspects of the new SQL:1999 standard.
    • Provides a more extensive treatment of query processing than other books on the market.

  • Discussion of the technologies used to connect database programming with C or Java code–Includes discussions of SQL/PSM, SQL/CLI, and JDBC.
    • Gives students practical advice on integrating state-of-the-art technologies with databases.

  • Coverage of advanced issues important to database designers and users.
    • Includes discussions of views, integrity constraints, assertions, triggers, transactions, authorization, and recursion in SQL:1999.

  • Discussions of how to successfully plan a database application before building it.
    • Reflects how these plans are developed in the real world.

  • Coverage of topics such as designing storage structures and implementing a variety of indexing schemes.
    • Shows students how to build efficient database management systems.

  • Extensive coverage of query processing and optimization.
    • Shows students how to fine tune database systems to improve performance.

  • Comprehensive coverage of transaction processing mechanisms for concurrency control and recovery, including distributed and long-duration transactions.
    • Shows how to design complex database systems that can handle real-world business applications.

  • Coverage of information integration, including data warehousing, mediation, OLAP, data-cube systems, and data mining.
    • Exposes readers to cutting edge technology used in business applications.

  • Extensive exercises–In almost every section.
    • Provides students with the opportunity to practice and apply the concepts they've learned in each chapter.

  • Please note that GOAL/Gradiance is no longer available with this book.

New to this Edition

  • Chapters have been extensively reorganized and augmented.
  • Relational modeling is covered in chapters 2-4.
  • Chapter 4 is devoted to high-level modeling, and includes the E/R model as well as UML (Unified Modeling Language).
  • The viewpoint of Chapter 3 - which focuses on functional and multivalued dependencies - has been modified, so that a functional dependency is now assumed to have a set of attributes on the right. Explicitly certain algorithms, including the “chase,” allow us to manipulate dependencies. The discussion of third normal form has been augmented to include the 3NF synthesis algorithm and to delineate the tradeoff between 3NF and BCNF.
  • Chapter 5 contains the coverage of relational algebra from the previous edition, and is joined by (part of) the treatment of Datalog from the old Chapter 10.
  • The discussion of recursion in Datalog is either moved to the book’s Web site or combined with the treatment of recursive SQL in Chapter 10 of this edition.
  • Chapters 6-10 are devoted to aspects of SQL programming, and they represent a reorganization and augmentation of the earlier book’s Chapters 6, 7, 8, and parts of 10. The material on indexes and views has been moved to its own chapter, number 8, and this material has been augmented with a discussion of important new topics, including materialized views, and automatic selection of indexes.
  • The New Chapter 9 is based on the old Chapter 8 (embedded SQL). It is introduced by a new section on 3-tiered architecture. It also includes an expanded discussion of JDBC and new coverage of PHP.
  • Chapter 10 collects a number of advanced SQL topics, including the nested-relation model, object-relational features of SQL, and data cubes.
  • Chapters 11 and 12, covering XML and XML-based systems, contain new and expanded material on modeling and programming, including XML schema, DTD's, XPath, XQuery, and XSLT.
  • Chapter 20, covering parallel and distributed databases, includes new sections on distributed query execution, the map-reduce framework for parallel computation, peer-to-peer databases and their implementation of distributed hash tables.
  • New sections on local-as-view mediators and entity resolution have been added to Chapter 21, which covers information integration.
  • The expanded data mining chapter includes material on association rules and frequent itemset mining, including both the famous A-Priori Algorithm and certain efficiency improvements. Key techniques of shingling, minhashing, locality-sensitive hashing, and clustering have been added.
  • An entirely new Chapter 23 addresses ways in which the Internet has impacted database technology through search engines and data-stream management systems.

Table of Contents

 TABLE OF CONTENTS

 

1 The Worlds of Database Systems

   1.1 The Evolution of Database Systems

   1.1.1 Early Database Management Systems

   1.1.2 Relational Database Systems

   1.1.3 Smaller and Smaller Systems

   1.1.4 Bigger and Bigger Systems

   1.1.5 Information Integration

   1.2 Overview of a Database Management System

   1.2.1 Data-Definition Language Commands

   1.2.2 Overview of Query Processing

   1.2.3 Storage and Buffer Management

   1.2.4 Transaction Processing

   1.2.5 The Query Processor

   1.3 Outline of Database-System Studies

   1.4 References for Chapter 1

 

PART I: Relational Database Modeling

 

2 The Relational Model of Data

   2.1 An Overview of Data Models

   2.1.1 What is a Data Model?

   2.1.2 Important Data Models

   2.1.3 The Relational Model in Brief

   2.1.4 The Semistructured Model in Brief

   2.1.5 Other Data Models

   2.1.6 Comparison of Modeling Approaches

   2.2 Basics of the Relational Model

   2.2.1 Attributes

   2.2.2 Schemas

   2.2.3 Tuples

   2.2.4 Domains

   2.2.5 Equivalent Representations of a Relation

   2.2.6 Relation Instances

   2.2.7 Keys of Relations

   2.2.8 An Example Database Schema

   2.2.9 Exercises for Section 2.2

   2.3 Defining a Relation Schema in SQL

   2.3.1 Relations in SQL

   2.3.2 Data Types

   2.3.3 Simple Table Declarations

   2.3.4 Modifying Relation Schemas

   2.3.5 Default Values

   2.3.6 Declaring Keys

   2.3.7 Exercises for Section 2.3

   2.4 An Algebraic Query Language

   2.4.1 Why Do We Need a Special Query Language?

   2.4.2 What is an Algebra?

   2.4.3 Overview of Relational Algebra

   2.4.4 Set Operations on Relations

   2.4.5 Projection

   2.4.6 Selection

   2.4.7 Cartesian Product

   2.4.8 Natural Joins

   2.4.9 Theta-Joins

   2.4.10 Combining Operations to Form Queries

   2.4.11 Naming and Renaming

   2.4.12 Relationships Among Operations

   2.4.13 A Linear Notation for Algebraic Expressions

   2.4.14 Exercises for Section 2.4

   2.5 Constraints on Relations

   2.5.1 Relational Algebra as a Constraint Language

   2.5.2 Referential Integrity Constraints

   2.5.3 Key Constraints

   2.5.4 Additional Constraint Examples

   2.5.5 Exercises for Section 2.5

   2.6 Summary of Chapter 2

   2.7 References for Chapter 2

3 Design Theory for Relational Databases

   3.1 Functional Dependencies

   3.1.1 Definition of Functional Dependency

   3.1.2 Keys of Relations

   3.1.3 Superkeys

   3.1.4 Exercises for Section 3.1

   3.2 Rules About Functional Dependencies

   3.2.1 Reasoning About Functional Dependencies

   3.2.2 The Splitting/Combining Rule

   3.2.3 Trivial Functional Dependencies

   3.2.4 Computing the Closure of Attributes

   3.2.5 Why the Closure Algorithm Works

   3.2.6 The Transitive Rule

   3.2.7 Closing Sets of Functional Dependencies

   3.2.8 Projecting Functional Dependencies

   3.2.9 Exercises for Section 3.2

   3.3 Design of Relational Database Schemas

   3.3.1 Anomalies

   3.3.2 Decomposing Relations

   3.3.3 Boyce-Codd Normal Form

   3.3.4 Decomposition into BCNF

   3.3.5 Exercises for Section 3.3

   3.4 Decomposition: The Good, Bad, and Ugly

   3.4.1 Recovering Information from a Decomposition

   3.4.2 The Chase Test for Lossless Join

   3.4.3 Why the Chase Works

   3.4.4 Dependency Preservation

   3.4.5 Exercises for Section 3.4

   3.5 Third Normal Form

   3.5.1 Definition of Third Normal Form

   3.5.2 The Synthesis Algorithm for 3NF Schemas

   3.5.3 Why the 3NF Synthesis Algorithm Works

   3.5.4 Exercises for Section 3.5

   3.6 Multivalued Dependencies

   3.6.1 Attribute Independence and Its Consequent Redundancy

   3.6.2 Definition of Multivalued Dependencies

   3.6.3 Reasoning About Multivalued Dependencies

   3.6.4 Fourth Normal Form

   3.6.5 Decomposition into Fourth Normal Form

   3.6.6 Relationships Among Normal Forms

   3.6.7 Exercises for Section 3.6

   3.7 An Algorithm for Discovering MVD's

   3.7.1 The Closure and the Chase

   3.7.2 Extending the Chase to MVD's

   3.7.3 Why the Chase Works for MVD's

   3.7.4 Projecting MVD's

   3.7.5 Exercises for Section 3.7

   3.8 Summary of Chapter 3

   3.9 References for Chapter 3

4 High-Level Database Models

   4.1 The Entity/Relationship Model

   4.1.1 Entity Sets

   4.1.2 Attributes

   4.1.3 Relationships

   4.1.4 Entity-Relationship Diagrams

   4.1.5 Instances of an E/R Diagram

   4.1.6 Multiplicity of Binary E/R Relationships

   4.1.7 Multiway Relationships

   4.1.8 Roles in Relationships

   4.1.9 Attributes on Relationships

   4.1.10 Converting Multiway Relationships to Binary

   4.1.11 Subclasses in the E/R Model

   4.1.12 Exercises for Section 4.1

   4.2 Design Principles

   4.2.1 Faithfulness

   4.2.2 Avoiding Redundancy

   4.2.3 Simplicity Counts

   4.2.4 Choosing the Right Relationships

   4.2.5 Picking the Right Kind of Element

   4.2.6 Exercises for Section 4.2

   4.3 Constraints in the E/R Model

   4.3.1 Keys in the E/R Model

   4.3.2 Representing Keys in the E/R Model

   4.3.3 Referential Integrity

   4.3.4 Degree Constraints

   4.3.5 Exercises for Section 4.3

   4.4 Weak Entity Sets

   4.4.1 Causes of Weak Entity Sets

   4.4.2 Requirements for Weak Entity Sets

   4.4.3 Weak Entity Set Notation

   4.4.4 Exercises for Section 4.4

   4.5 From E/R Diagrams to Relational Designs

   4.5.1 From Entity Sets to Relations

   4.5.2 From E/R Relationships to Relations

   4.5.3 Combining Relations

   4.5.4 Handling Weak Entity Sets

   4.5.5 Exercises for Section 4.5

   4.6 Converting Subclass Structures to Relations

   4.6.1 E/R-Style Conversion

   4.6.2 An Object-Oriented Approach

   4.6.3 Using Null Values to Combine Relations

   4.6.4 Comparison of Approaches

   4.6.5 Exercises for Section 4.6

   4.7 Unified Modeling Language

   4.7.1 UML Classes

   4.7.2 Keys for UML classes

   4.7.3 Associations

   4.7.4 Self-Associations

   4.7.5 Association Classes

   4.7.6 Subclasses in UML

   4.7.7 Aggregations and Compositions

   4.7.8 Exercises for Section 4.7

   4.8 From UML Diagrams to Relations

   4.8.1 UML-to-Relations Basics

   4.8.2 From UML Subclasses to Relations

   4.8.3 From Aggregations and Compositions to Relations

   4.8.4 The UML Analog of Weak Entity Sets

   4.8.5 Exercises for Section 4.8

   4.9 Object Definition Language

   4.9.1 Class Declarations

   4.9.2 Attributes in ODL

   4.9.3 Relationships in ODL

   4.9.4 Inverse Relationships

   4.9.5 Multiplicity of Relationships

   4.9.6 Types in ODL

   4.9.7 Subclasses in ODL

   4.9.8 Declaring Keys in ODL

   4.9.9 Exercises for Section 4.9

   4.10 From ODL Designs to Relational Designs

   4.10.1 From ODL Classes to Relations

   4.10.2 Complex Attributes in Classes

   4.10.3 Representing Set-Valued Attributes

   4.10.4 Representing Other Type Constructors

   4.10.5 Representing ODL Relationships

   4.10.6 Exercises for Section 4.10

   4.11 Summary of Chapter 4

   4.12 References for Chapter 4

 

PART II: Relational Database Programming

 

5 Algebraic and Logical Query Languages

   5.1 Relational Operations on Bags

   5.1.1 Why Bags?

   5.1.2 Union, Intersection, and Difference of Bags

   5.1.3 Projection of Bags

   5.1.4 Selection on Bags

   5.1.5 Product of Bags

   5.1.6 Joins of Bags

   5.1.7 Exercises for Section 5.1

   5.2 Extended Operators of Relational Algebra

   5.2.1 Duplicate Elimination

   5.2.2 Aggregation Operators

   5.2.3 Grouping

   5.2.4 The Grouping Operator

   5.2.5 Extending the Projection Operator

   5.2.6 The Sorting Operator

   5.2.7 Outerjoins

   5.2.8 Exercises for Section 5.2

   5.3 A Logic for Relations

   5.3.1 Predicates and Atoms

   5.3.2 Arithmetic Atoms

   5.3.3 Datalog Rules and Queries

   5.3.4 Meaning of Datalog Rules

   5.3.5 Extensional and Intensional Predicates

   5.3.6 Datalog Rules Applied to Bags

   5.3.7 Exercises for Section 5.3

   5.4 Relational Algebra and Datalog

   5.4.1 Boolean Operations

   5.4.2 Projection

   5.4.3 Selection

   5.4.4 Product

   5.4.5 Joins

   5.4.6 Simulating Multiple Operations with Datalog

   5.4.7 Comparison Between Datalog and Relational Algebra

   5.4.8 Exercises for Section 5.4

   5.5 Summary of Chapter 5

   5.6 References for Chapter 5

6 The Database Language SQL

   6.1 Simple Queries in SQL

   6.1.1 Projection in SQL

   6.1.2 Selection in SQL

   6.1.3 Comparison of Strings

   6.1.4 Pattern Matching in SQL

   6.1.5 Dates and Times

   6.1.6 Null Values and Comparisons Involving {\tt NULL}

   6.1.7 The Truth-Value {\tt UNKNOWN}

   6.1.8 Ordering the Output

   6.1.9 Exercises for Section 6.1

   6.2 Queries Involving More Than One Relation

   6.2.1 Products and Joins in SQL

   6.2.2 Disambiguating Attributes

   6.2.3 Tuple Variables

   6.2.4 Interpreting Multirelation Queries

   6.2.5 Union, Intersection, and Difference of Queries

   6.2.6 Exercises for Section 6.2

   6.3 Subqueries

   6.3.1 Subqueries that Produce Scalar Values

   6.3.2 Conditions Involving Relations

   6.3.3 Conditions Involving Tuples

   6.3.4 Correlated Subqueries

   6.3.5 Subqueries in {\tt FROM}\ Clauses

   6.3.6 SQL Join Expressions

   6.3.7 Natural Joins

   6.3.8 Outerjoins

   6.3.9 Exercises for Section 6.3

   6.4 Full-Relation Operations

   6.4.1 Eliminating Duplicates

   6.4.2 Duplicates in Unions, Intersections, and Differences

      6.4.3 Grouping and Aggregation in SQL

   6.4.4 Aggregation Operators

   6.4.5 Grouping

   6.4.6 Grouping, Aggregation, and Nulls

   6.4.7 {\tt HAVING} Clauses

   6.4.8 Exercises for Section 6.4

   6.5 Database Modifications

   6.5.1 Insertion

   6.5.2 Deletion

   6.5.3 Updates

   6.5.4 Exercises for Section 6.5

   6.6 Transactions in SQL

   6.6.1 Serializability

   6.6.2 Atomicity

   6.6.3 Transactions

   6.6.4 Read-Only Transactions

   6.6.5 Dirty Reads

   6.6.6 Other Isolation Levels

   6.6.7 Exercises for Section 6.6

   6.7 Summary of Chapter 6

   6.8 References for Chapter 6

7 Constraints and Triggers

   7.1 Keys and Foreign Keys

   7.1.1 Declaring Foreign-Key Constraints

   7.1.2 Maintaining Referential Integrity

   7.1.3 Deferred Checking of Constraints

   7.1.4 Exercises for Section 7.1

   7.2 Constraints on Attributes and Tuples

   7.2.1 Not-Null Constraints

   7.2.2 Attribute-Based {\tt CHECK} Constraints

   7.2.3 Tuple-Based {\tt CHECK} Constraints

   7.2.4 Comparison of Tuple- and Attribute-Based Constraints

   7.2.5 Exercises for Section 7.2

   7.3 Modification of Constraints

   7.3.1 Giving Names to Constraints

   7.3.2 Altering Constraints on Tables

   7.3.3 Exercises for Section 7.3

   7.4 Assertions

   7.4.1 Creating Assertions

   7.4.2 Using Assertions

   7.4.3 Exercises for Section 7.4

   7.5 Triggers

   7.5.1 Triggers in SQL

   7.5.2 The Options for Trigger Design

   7.5.3 Exercises for Section 7.5

   7.6 Summary of Chapter 7

   7.7 References for Chapter 7

8 Views and Indexes

   8.1 Virtual Views

   8.1.1 Declaring Views

   8.1.2 Querying Views

   8.1.3 Renaming Attributes

   8.1.4 Exercises for Section 8.1

   8.2 Modifying Views

   8.2.1 View Removal

   8.2.2 Updatable Views

   8.2.3 Instead-Of Triggers on Views

   8.2.4 Exercises for Section 8.2

   8.3 Indexes in SQL

   8.3.1 Motivation for Indexes

   8.3.2 Declaring Indexes

   8.3.3 Exercises for Section 8.3

   8.4 Selection of Indexes

   8.4.1 A Simple Cost Model

   8.4.2 Some Useful Indexes

   8.4.3 Calculating the Best Indexes to Create

   8.4.4 Automatic Selection of Indexes to Create

   8.4.5 Exercises for Section 8.4

   8.5 Materialized Views

   8.5.1 Maintaining a Materialized View

   8.5.2 Periodic Maintenance of Materialized Views

   8.5.3 Rewriting Queries to Use Materialized Views

   8.5.4 Automatic Creation of Materialized Views

   8.5.5 Exercises for Section 8.5

   8.6 Summary of Chapter 8

   8.7 References for Chapter 8

9 SQL in a Server Environment

   9.1 The Three-Tier Architecture

   9.1.1 The Web-Server Tier

   9.1.2 The Application Tier

   9.1.3 The Database Tier

   9.2 The SQL Environment

      9.2.1 Environments

   9.2.2 Schemas

   9.2.3 Catalogs

   9.2.4 Clients and Servers in the SQL Environment

   9.2.5 Connections

   9.2.6 Sessions

   9.2.7 Modules

   9.3 The SQL/Host-Language Interface

   9.3.1 The Impedance Mismatch Problem

   9.3.2 Connecting SQL to the Host Language

   9.3.3 The {\tt DECLARE} Section

   9.3.4 Using Shared Variables

   9.3.5 Single-Row Select Statements

   9.3.6 Cursors

   9.3.7 Modifications by Cursor

   9.3.8 Protecting Against Concurrent Updates

   9.3.9 Dynamic SQL

   9.3.10 Exercises for Section 9.3

   9.4 Stored Procedures

   9.4.1 Creating PSM Functions and Procedures

   9.4.2 Some Simple Statement Forms in PSM

   9.4.3 Branching Statements

   9.4.4 Queries in PSM

   9.4.5 Loops in PSM

   9.4.6 For-Loops

   9.4.7 Exceptions in PSM

   9.4.8 Using PSM Functions and Procedures

   9.4.9 Exercises for Section 9.4

   9.5 Using a Call-Level Interface

   9.5.1 Introduction to SQL/CLI

   9.5.2 Processing Statements

   9.5.3 Fetching Data From a Query Result

   9.5.4 Passing Parameters to Queries

   9.5.5 Exercises for Section 9.5

   9.6 JDBC

   9.6.1 Introduction to JDBC

   9.6.2 Creating Statements in JDBC

   9.6.3 Cursor Operations in JDBC

   9.6.4 Parameter Passing

   9.6.5 Exercises for Section 9.6

   9.7 PHP

   9.7.1 PHP Basics

   9.7.2 Arrays

   9.7.3 The PEAR DB Library

   9.7.4 Creating a Database Connection Using DB

   9.7.5 Executing SQL Statements

   9.7.6 Cursor Operations in PHP

   9.7.7 Dynamic SQL in PHP

   9.7.8 Exercises for Section 9.7

   9.8 Summary of Chapter 9

   9.9 References for Chapter 9

10 Advanced Topics in Relational Databases

   10.1 Security and User Authorization in SQL

   10.1.1 Privileges

   10.1.2 Creating Privileges

   10.1.3 The Privilege-Checking Process

   10.1.4 Granting Privileges

   10.1.5 Grant Diagrams

   10.1.6 Revoking Privileges

   10.1.7 Exercises for Section 10.1

   10.2 Recursion in SQL

   10.2.1 Defining Recursive Relations in SQL

   10.2.2 Problematic Expressions in Recursive SQL

   10.2.3 Exercises for Section 10.2

   10.3 The Object-Relational Model

   10.3.1 From Relations to Object-Relations

   10.3.2 Nested Relations

   10.3.3 References

   10.3.4 Object-Oriented Versus Object-Relational

   10.3.5 Exercises for Section 10.3

   10.4 User-Defined Types in SQL

   10.4.1 Defining Types in SQL

   10.4.2 Method Declarations in UDT's

   10.4.3 Method Definitions

   10.4.4 Declaring Relations with a UDT

   10.4.5 References

   10.4.6 Creating Object ID's for Tables

   10.4.7 Exercises for Section 10.4

   10.5 Operations on Object-Relational Data

   10.5.1 Following References

   10.5.2 Accessing Components of Tuples with a UDT

   10.5.3 Generator and Mutator Functions

   10.5.4 Ordering Relationships on UDT's

   10.5.5 Exercises for Section 10.5

   10.6 On-Line Analytic Processing

   10.6.1 OLAP and Data Warehouses

   10.6.2 OLAP Applications

   10.6.3 A Multidimensional View of OLAP Data

   10.6.4 Star Schemas

   10.6.5 Slicing and Dicing

   10.6.6 Exercises for Section 10.6

   10.7 Data Cubes

   10.7.1 The Cube Operator

   10.7.2 The Cube Operator in SQL

   10.7.3 Exercises for Section 10.7

   10.8 Summary of Chapter 10

   10.9 References for Chapter 10

 

PART III: Modeling and Programming for Semistructured Data

 

11 The Semistructured-Data Model

   11.1 Semistructured Data

   11.1.1 Motivation for the Semistructured-Data Model

   11.1.2 Semistructured Data Representation

   11.1.3 Information Integration Via Semistructured Data

   11.1.4 Exercises for Section 11.1

   11.2 XML

   11.2.1 Semantic Tags

   11.2.2 XML With and Without a Schema

   11.2.3 Well-Formed XML

   11.2.4 Attributes

   11.2.5 Attributes That Connect Elements

   11.2.6 Namespaces

   11.2.7 XML and Databases

   11.2.8 Exercises for Section 11.2

   11.3 Document Type Definitions

   11.3.1 The Form of a DTD

   11.3.2 Using a DTD

   11.3.3 Attribute Lists

   11.3.4 Identifiers and References

   11.3.5 Exercises for Section 11.3

   11.4 XML Schema

   11.4.1 The Form of an XML Schema

   11.4.2 Elements

   11.4.3 Complex Types

   11.4.4 Attributes

   11.4.5 Restricted Simple Types

   11.4.6 Keys in XML Schema

   11.4.7 Foreign Keys in XML Schema

   11.4.8 Exercises for Section 11.4

   11.5 Summary of Chapter 11

   11.6 References for Chapter 11

12 Programming Languages for XML

   12.1 XPath

   12.1.1 The XPath Data Model

   12.1.2 Document Nodes

   12.1.3 Path Expressions

   12.1.4 Relative Path Expressions

   12.1.5 Attributes in Path Expressions

   12.1.6 Axes

   12.1.7 Context of Expressions

   12.1.8 Wildcards

   12.1.9 Conditions in Path Expressions

   12.1.10 Exercises for Section 12.1

   12.2 XQuery

   12.2.1 XQuery Basics

   12.2.2 FLWR Expressions

   12.2.3 Replacement of Variables by Their Values

   12.2.4 Joins in XQuery

   12.2.5 XQuery Comparison Operators

   12.2.6 Elimination of Duplicates

   12.2.7 Quantification in XQuery

   12.2.8 Aggregations

   12.2.9 Branching in XQuery Expressions

   12.2.10 Ordering the Result of a Query

   12.2.11 Exercises for Section 12.2

   12.3 Extensible Stylesheet Language

   12.3.1 XSLT Basics

   12.3.2 Templates

   12.3.3 Obtaining Values From XML Data

   12.3.4 Recursive Use of Templates

   12.3.5 Iteration in XSLT

   12.3.6 Conditionals in XSLT

   12.3.7 Exercises for Section 12.3

   12.4 Summary of Chapter 12

   12.5 References for Chapter 12

 

PART IV: Database System Implementation

 

13 Secondary Storage Management

   13.1 The Memory Hierarchy

   13.1.1 The Memory Hierarchy

   13.1.2 Transfer of Data Between Levels

   13.1.3 Volatile and Nonvolatile Storage

   13.1.4 Virtual Memory

   13.1.5 Exercises for Section 13.1

   13.2 Disks

   13.2.1 Mechanics of Disks

   13.2.2 The Disk Controller

   13.2.3 Disk Access Characteristics

   13.2.4 Exercises for Section 13.2

   13.3 Accelerating Access to Secondary Storage

   13.3.1 The I/O Model of Computation

   13.3.2 Organizing Data by Cylinders

   13.3.3 Using Multiple Disks

   13.3.4 Mirroring Disks

   13.3.5 Disk Scheduling and the Elevator Algorithm

   13.3.6 Prefetching and Large-Scale Buffering

   13.3.7 Exercises for Section 13.3

   13.4 Disk Failures

   13.4.1 Intermittent Failures

   13.4.2 Checksums

   13.4.3 Stable Storage

   13.4.4 Error-Handling Capabilities of Stable Storage

   13.4.5 Recovery from Disk Crashes

   13.4.6 Mirroring as a Redundancy Technique

   13.4.7 Parity Blocks

   13.4.8 An Improvement: RAID 5

   13.4.9 Coping With Multiple Disk Crashes

   13.4.10 Exercises for Section 13.4

   13.5 Arranging Data on Disk

   13.5.1 Fixed-Length Records

   13.5.2 Packing Fixed-Length Records into Blocks

   13.5.3 Exercises for Section 13.5

   13.6 Representing Block and Record Addresses

   13.6.1 Addresses in Client-Server Systems

   13.6.2 Logical and Structured Addresses

   13.6.3 Pointer Swizzling

   13.6.4 Returning Blocks to Disk

   13.6.5 Pinned Records and Blocks

   13.6.6 Exercises for Section 13.6

   13.7 Variable-Length Data and Records

   13.7.1 Records With Variable-Length Fields

   13.7.2 Records With Repeating Fields

   13.7.3 Variable-Format Records

   13.7.4 Records That Do Not Fit in a Block

   13.7.5 BLOBs

   13.7.6 Column Stores

   13.7.7 Exercises for Section 13.7

   13.8 Record Modifications

   13.8.1 Insertion

   13.8.2 Deletion

   13.8.3 Update

   13.8.4 Exercises for Section 13.8

   13.9 Summary of Chapter 13

   13.10 References for Chapter 13

14 Index Structures

   14.1 Index-Structure Basics

   14.1.1 Sequential Files

   14.1.2 Dense Indexes

   14.1.3 Sparse Indexes

   14.1.4 Multiple Levels of Index

   14.1.5 Secondary Indexes

   14.1.6 Applications of Secondary Indexes

   14.1.7 Indirection in Secondary Indexes

   14.1.8 Document Retrieval and Inverted Indexes

   14.1.9 Exercises for Section 14.1

   14.2 B-Trees

   14.2.1 The Structure of B-trees

   14.2.2 Applications of B-trees

   14.2.3 Lookup in B-Trees

   14.2.4 Range Queries

   14.2.5 Insertion Into B-Trees

   14.2.6 Deletion From B-Trees

   14.2.7 Efficiency of B-Trees

   14.2.8 Exercises for Section 14.2

   14.3 Hash Tables

   14.3.1 Secondary-Storage Hash Tables

   14.3.2 Insertion Into a Hash Table

   14.3.3 Hash-Table Deletion

   14.3.4 Efficiency of Hash Table Indexes

   14.3.5 Extensible Hash Tables

   14.3.6 Insertion Into Extensible Hash Tables

   14.3.7 Linear Hash Tables

   14.3.8 Insertion Into Linear Hash Tables

   14.3.9 Exercises for Section 14.3

   14.4 Multidimensional Indexes

   14.4.1 Applications of Multidimensional Indexes

   14.4.2 Executing Range Queries Using Conventional Indexes

   14.4.3 Executing Nearest-Neighbor Queries Using Conventional Indexes

   14.4.4 Overview of Multidimensional Index Structures

   14.5 Hash Structures for Multidimensional Data

   14.5.1 Grid Files

   14.5.2 Lookup in a Grid File

   14.5.3 Insertion Into Grid Files

   14.5.4 Performance of Grid Files

   14.5.5 Partitioned Hash Functions

   14.5.6 Comparison of Grid Files and Partitioned Hashing

   14.5.7 Exercises for Section 14.5

   14.6 Tree Structures for Multidimensional Data

   14.6.1 Multiple-Key Indexes

   14.6.2 Performance of Multiple-Key Indexes

   14.6.3 $kd$-Trees

   14.6.4 Operations on $kd$-Trees

   14.6.5 Adapting $kd$-Trees to Secondary Storage

   14.6.6 Quad Trees

   14.6.7 R-Trees

   14.6.8 Operations on R-Trees

   14.6.9 Exercises for Section 14.6

   14.7 Bitmap Indexes

   14.7.1 Motivation for Bitmap Indexes

   14.7.2 Compressed Bitmaps

   14.7.3 Operating on Run-Length-Encoded Bit-Vectors

   14.7.4 Managing Bitmap Indexes

   14.7.5 Exercises for Section 14.7

   14.8 Summary of Chapter 14

   14.9 References for Chapter 14

15 Query Execution

   15.1 Introduction to Physical-Query-Plan Operators

   15.1.1 Scanning Tables

   15.1.2 Sorting While Scanning Tables

   15.1.3 The Computation Model for Physical Operators

   15.1.4 Parameters for Measuring Costs

   15.1.5 I/O Cost for Scan Operators

   15.1.6 Iterators for Implementation of Physical Operators

   15.2 One-Pass Algorithms

   15.2.1 One-Pass Algorithms for Tuple-at-a-Time Operations

   15.2.2 One-Pass Algorithms for Unary, Full-Relation Operations

   15.2.3 One-Pass Algorithms for Binary Operations

   15.2.4 Exercises for Section 15.2

   15.3 Nested-Loop Joins

   15.3.1 Tuple-Based Nested-Loop Join

   15.3.2 An Iterator for Tuple-Based Nested-Loop Join

   15.3.3 Block-Based Nested-Loop Join Algorithm

   15.3.4 Analysis of Nested-Loop Join

   15.3.5 Summary of Algorithms so Far

   15.3.6 Exercises for Section 15.3

   15.4 Two-Pass Algorithms Based on Sorting

   15.4.1 Two-Phase, Multiway Merge-Sort

   15.4.2 Duplicate Elimination Using Sorting

   15.4.3 Grouping and Aggregation Using Sorting

   15.4.4 A Sort-Based Union Algorithm

   15.4.5 Sort-Based Intersection and Difference

   15.4.6 A Simple Sort-Based Join Algorithm

   15.4.7 Analysis of Simple Sort-Join

   15.4.8 A More Efficient Sort-Based Join

   15.4.9 Summary of Sort-Based Algorithms

   15.4.10 Exercises for Section 15.4

   15.5 Two-Pass Algorithms Based on Hashing

   15.5.1 Partitioning Relations by Hashing

   15.5.2 A Hash-Based Algorithm for Duplicate Elimination

   15.5.3 Hash-Based Grouping and Aggregation

   15.5.4 Hash-Based Union, Intersection, and Difference

      15.5.5 The Hash-Join Algorithm

   15.5.6 Saving Some Disk I/O's

   15.5.7 Summary of Hash-Based Algorithms

   15.5.8 Exercises for Section 15.5

   15.6 Index-Based Algorithms

   15.6.1 Clustering and Nonclustering Indexes

   15.6.2 Index-Based Selection

   15.6.3 Joining by Using an Index

   15.6.4 Joins Using a Sorted Index

   15.6.5 Exercises for Section 15.6

   15.7 Buffer Management

   15.7.1 Buffer Management Architecture

   15.7.2 Buffer Management Strategies

   15.7.3 The Relationship Between Physical Operator Selection and Buffer Management

   15.7.4 Exercises for Section 15.7

   15.8 Algorithms Using More Than Two Passes

   15.8.1 Multipass Sort-Based Algorithms

   15.8.2 Performance of Multipass, Sort-Based Algorithms

   15.8.3 Multipass Hash-Based Algorithms

   15.8.4 Performance of Multipass Hash-Based Algorithms

   15.8.5 Exercises for Section 15.8

   15.9 Summary of Chapter 15

   15.10 References for Chapter 15

16 The Query Compiler

   16.1 Parsing and Preprocessing

   16.1.1 Syntax Analysis and Parse Trees

   16.1.2 A Grammar for a Simple Subset of SQL

   16.1.3 The Preprocessor

   16.1.4 Preprocessing Queries Involving Views

   16.1.5 Exercises for Section 16.1

   16.2 Algebraic Laws for Improving Query Plans

   16.2.1 Commutative and Associative Laws

   16.2.2 Laws Involving Selection

   16.2.3 Pushing Selections

   16.2.4 Laws Involving Projection

   16.2.5 Laws About Joins and Products

   16.2.6 Laws Involving Duplicate Elimination

   16.2.7 Laws Involving Grouping and Aggregation

   16.2.8 Exercises for Section 16.2

   16.3 From Parse Trees to Logical Query Plans

   16.3.1 Conversion to Relational Algebra

   16.3.2 Removing Subqueries From Conditions

   16.3.3 Improving the Logical Query Plan

   16.3.4 Grouping Associative/Commutative Operators

   16.3.5 Exercises for Section 16.3

   16.4 Estimating the Cost of Operations

   16.4.1 Estimating Sizes of Intermediate Relations

   16.4.2 Estimating the Size of a Projection

   16.4.3 Estimating the Size of a Selection

   16.4.4 Estimating the Size of a Join

   16.4.5 Natural Joins With Multiple Join Attributes

   16.4.6 Joins of Many Relations

   16.4.7 Estimating Sizes for Other Operations

   16.4.8 Exercises for Section 16.4

   16.5 Introduction to Cost-Based Plan Selection

   16.5.1 Obtaining Estimates for Size Parameters

   16.5.2 Computation of Statistics

   16.5.3 Heuristics for Reducing the Cost of Logical Query Plans

   16.5.4 Approaches to Enumerating Physical Plans

   16.5.5 Exercises for Section 16.5

   16.6 Choosing an Order for Joins

   16.6.1 Significance of Left and Right Join Arguments

   16.6.2 Join Trees

   16.6.3 Left-Deep Join Trees

   16.6.4 Dynamic Programming to Select a Join Order and Grouping

   16.6.5 Dynamic Programming With More Detailed Cost Functions

   16.6.6 A Greedy Algorithm for Selecting a Join Order

   16.6.7 Exercises for Section 16.6

   16.7 Completing the Physical-Query-Plan

   16.7.1 Choosing a Selection Method

   16.7.2 Choosing a Join Method

   16.7.3 Pipelining Versus Materialization

   16.7.4 Pipelining Unary Operations

   16.7.5 Pipelining Binary Operations

   16.7.6 Notation for Physical Query Plans

   16.7.7 Ordering of Physical Operations

   16.7.8 Exercises for Section 16.7

   16.8 Summary of Chapter 16

   16.9 References for Chapter 16

17 Coping With System Failures

   17.1 Issues and Models for Resilient Operation

   17.1.1 Failure Modes

   17.1.2 More About Transactions

   17.1.3 Correct Execution of Transactions

   17.1.4 The Primitive Operations of Transactions

   17.1.5 Exercises for Section 17.1

   17.2 Undo Logging

   17.2.1 Log Records

   17.2.2 The Undo-Logging Rules

   17.2.3 Recovery Using Undo Logging

   17.2.4 Checkpointing

   17.2.5 Nonquiescent Checkpointing

   17.2.6 Exercises for Section 17.2

   17.3 Redo Logging

   17.3.1 The Redo-Logging Rule

   17.3.2 Recovery With Redo Logging

   17.3.3 Checkpointing a Redo Log

   17.3.4 Recovery With a Checkpointed Redo Log

   17.3.5 Exercises for Section 17.3

   17.4 Undo/Redo Logging

   17.4.1 The Undo/Redo Rules

   17.4.2 Recovery With Undo/Redo Logging

   17.4.3 Checkpointing an Undo/Redo Log

   17.4.4 Exercises for Section 17.4

   17.5 Protecting Against Media Failures

   17.5.1 The Archive

   17.5.2 Nonquiescent Archiving

   17.5.3 Recovery Using an Archive and Log

   17.5.4 Exercises for Section 17.5

   17.6 Summary of Chapter 17

   17.7 References for Chapter 17

18 Concurrency Control

   18.1 Serial and Serializable Schedules

   18.1.1 Schedules

   18.1.2 Serial Schedules

   18.1.3 Serializable Schedules

   18.1.4 The Effect of Transaction Semantics

   18.1.5 A Notation for Transactions and Schedules

   18.1.6 Exercises for Section 18.1

   18.2 Conflict-Serializability

   18.2.1 Conflicts

   18.2.2 Precedence Graphs and a Test for Conflict-Serializability

   18.2.3 Why the Precedence-Graph Test Works

   18.2.4 Exercises for Section 18.2

   18.3 Enforcing Serializability by Locks

   18.3.1 Locks

   18.3.2 The Locking Scheduler

   18.3.3 Two-Phase Locking

   18.3.4 Why Two-Phase Locking Works

   18.3.5 Exercises for Section 18.3

   18.4 Locking Systems With Several Lock Modes

   18.4.1 Shared and Exclusive Locks

   18.4.2 Compatibility Matrices

   18.4.3 Upgrading Locks

   18.4.4 Update Locks

   18.4.5 Increment Locks

   18.4.6 Exercises for Section 18.4

   18.5 An Architecture for a Locking Scheduler

   18.5.1 A Scheduler That Inserts Lock Actions

   18.5.2 The Lock Table

   18.5.3 Exercises for Section 18.5

   18.6 Hierarchies of Database Elements

   18.6.1 Locks With Multiple Granularity

   18.6.2 Warning Locks

   18.6.3 Phantoms and Handling Insertions Correctly

   18.6.4 Exercises for Section 18.6

   18.7 The Tree Protocol

   18.7.1 Motivation for Tree-Based Locking

   18.7.2 Rules for Access to Tree-Structured Data

   18.7.3 Why the Tree Protocol Works

   18.7.4 Exercises for Section 18.7

   18.8 Concurrency Control by Timestamps

   18.8.1 Timestamps

   18.8.2 Physically Unrealizable Behaviors

   18.8.3 Problems With Dirty Data

   18.8.4 The Rules for Timestamp-Based Scheduling

   18.8.5 Multiversion Timestamps

   18.8.6 Timestamps Versus Locking

   18.8.7 Exercises for Section 18.8

   18.9 Concurrency Control by Validation

   18.9.1 Architecture of a Validation-Based Scheduler

   18.9.2 The Validation Rules

   18.9.3 Comparison of Three Concurrency-Control Mechanisms

   18.9.4 Exercises for Section 18.9

   18.10 Summary of Chapter 18

   18.11 References for Chapter 18

19 More About Transaction Management

   19.1 Serializability and Recoverability

   19.1.1 The Dirty-Data Problem

   19.1.2 Cascading Rollback

   19.1.3 Recoverable Schedules

   19.1.4 Schedules That Avoid Cascading Rollback

   19.1.5 Managing Rollbacks Using Locking

   19.1.6 Group Commit

   19.1.7 Logical Logging

   19.1.8 Recovery From Logical Logs

   19.1.9 Exercises for Section 19.1

   19.2 Deadlocks

   19.2.1 Deadlock Detection by Timeout

   19.2.2 The Waits-For Graph

   19.2.3 Deadlock Prevention by Ordering Elements

   19.2.4 Detecting Deadlocks by Timestamps

   19.2.5 Comparison of Deadlock-Management Methods

   19.2.6 Exercises for Section 19.2

   19.3 Long-Duration Transactions

   19.3.1 Problems of Long Transactions

   19.3.2 Sagas

   19.3.3 Compensating Transactions

   19.3.4 Why Compensating Transactions Work

   19.3.5 Exercises for Section 19.3

   19.4 Summary of Chapter 19

   19.5 References for Chapter 19

20 Parallel and Distributed Databases

   20.1 Parallel Algorithms on Relations

   20.1.1 Models of Parallelism

   20.1.2 Tuple-at-a-Time Operations in Parallel

   20.1.3 Parallel Algorithms for Full-Relation Operations

   20.1.4 Performance of Parallel Algorithms

   20.1.5 Exercises for Section 20.1

   20.2 The Map-Reduce Parallelism Framework

   20.2.1 The Storage Model

   20.2.2 The Map Function

   20.2.3 The Reduce Function

   20.2.4 Exercises for Section 20.2

   20.3 Distributed Databases

   20.3.1 Distribution of Data

   20.3.2 Distributed Transactions

   20.3.3 Data Replication

   20.3.4 Exercises for Section 20.3

   20.4 Distributed Query Processing

   20.4.1 The Distributed Join Problem

   20.4.2 Semijoin Reductions

   20.4.3 Joins of Many Relations

   20.4.4 Acyclic Hypergraphs

   20.4.5 Full Reducers for Acyclic Hypergraphs

   20.4.6 Why the Full-Reducer Algorithm Works

   20.4.7 Exercises for Section 20.4

   20.5 Distributed Commit

   20.5.1 Supporting Distributed Atomicity

   20.5.2 Two-Phase Commit

   20.5.3 Recovery of Distributed Transactions

   20.5.4 Exercises for Section 20.5

   20.6 Distributed Locking

   20.6.1 Centralized Lock Systems

   20.6.2 A Cost Model for Distributed Locking Algorithms

   20.6.3 Locking Replicated Elements

   20.6.4 Primary-Copy Locking

   20.6.5 Global Locks From Local Locks

   20.6.6 Exercises for Section 20.6

   20.7 Peer-to-Peer Distributed Search

   20.7.1 Peer-to-Peer Networks

   20.7.2 The Distributed-Hashing Problem

   20.7.3 Centralized Solutions for Distributed Hashing

   20.7.4 Chord Circles

   20.7.5 Links in Chord Circles

   20.7.6 Search Using Finger Tables

   20.7.7 Adding New Nodes

   20.7.8 When a Peer Leaves the Network

   20.7.9 When a Peer Fails

   20.7.10 Exercises for Section 20.7

   20.8 Summary of Chapter 20

   20.9 References for Chapter 20

 

PART V: Other Issues in Management of Massive Data

 

21 Information Integration

   21.1 Introduction to Information Integration

   21.1.1 Why Information Integration?

   21.1.2 The Heterogeneity Problem

   21.2 Modes of Information Integration

   21.2.1 Federated Database Systems

   21.2.2 Data Warehouses

   21.2.3 Mediators

   21.2.4 Exercises for Section 21.2

   21.3 Wrappers in Mediator-Based Systems

   21.3.1 Templates for Query Patterns

   21.3.2 Wrapper Generators

   21.3.3 Filters

   21.3.4 Other Operations at the Wrapper

   21.3.5 Exercises for Section 21.3

   21.4 Capability-Based Optimization

   21.4.1 The Problem of Limited Source Capabilities

      21.4.2 A Notation for Describing Source Capabilities

   21.4.3 Capability-Based Query-Plan Selection

   21.4.4 Adding Cost-Based Optimization

   21.4.5 Exercises for Section 21.4

   21.5 Optimizing Mediator Queries

   21.5.1 Simplified Adornment Notation

   21.5.2 Obtaining Answers for Subgoals

   21.5.3 The Chain Algorithm

   21.5.4 Incorporating Union Views at the Mediator

   21.5.5 Exercises for Section 21.5

   21.6 Local-as-View Mediators

   21.6.1 Motivation for LAV Mediators

   21.6.2 Terminology for LAV Mediation

   21.6.3 Expanding Solutions

   21.6.4 Containment of Conjunctive Queries

   21.6.5 Why the Containment-Mapping Test Works

   21.6.6 Finding Solutions to a Mediator Query

   21.6.7 Why the LMSS Theorem Holds

   21.6.8 Exercises for Section 21.6

   21.7 Entity Resolution

   21.7.1 Deciding Whether Records Represent a Common Entity

   21.7.2 Merging Similar Records

   21.7.3 Useful Properties of Similarity and Merge Functions

   21.7.4 The R-Swoosh Algorithm for ICAR Records

   21.7.5 Why R-Swoosh Works

   21.7.6 Other Approaches to Entity Resolution

   21.7.7 Exercises for Section 21.7

   21.8 Summary of Chapter 21

   21.9 References for Chapter 21

22 Database Systems and the Internet

   22.1 The Architecture of a Search Engine

   22.1.1 Components of a Search Engine

   22.1.2 Web Crawlers

   22.1.3 Query Processing in Search Engines

   22.1.4 Ranking Pages

   22.2 PageRank for Identifying Important Pages

   22.2.1 The Intuition Behind PageRank

   22.2.2 Recursive Formulation of PageRank\nobreakspace {}--- First Try

   22.2.3 Spider Traps and Dead Ends

   22.2.4 PageRank Accounting for Spider Traps and Dead Ends

   22.2.5 Exercises for Section 23.2

   22.3 Topic-Specific PageRank

   22.3.1 Teleport Sets

   22.3.2 Calculating A Topic-Specific PageRank

   22.3.3 Link Spam

   22.3.4 Topic-Specific PageRank and Link Spam

   22.3.5 Exercises for Section 23.3

   22.4 Data Streams

   22.4.1 Data-Stream-Management Systems

   22.4.2 Stream Applications

   22.4.3 A Data-Stream Data Model

   22.4.4 Converting Streams Into Relations

   22.4.5 Converting Relations Into Streams

   22.4.6 Exercises for Section 23.4

   22.5 Data Mining of Streams

   22.5.1 Motivation

   22.5.2 Counting Bits

   22.5.3 Counting the Number of Distinct Elements

   22.5.4 Exercises for Section 23.5

   22.6 Summary of Chapter 23

   22.7 References for Chapter 23