- Series
- Addison-Wesley
- Author
- Ralph P. Grimaldi
- Publisher
- Pearson
- Cover
- Softcover
- Edition
- 5
- Language
- English
- Total pages
- 1008
- Pub.-date
- March 2017
- ISBN13
- 9780321385024
- ISBN
- 0321385020
- Related Titles

ISBN | Product | Product | Price CHF | Available | |
---|---|---|---|---|---|

Discrete and Combinatorial Mathematics (Classic Version) |
9780321385024 Discrete and Combinatorial Mathematics (Classic Version) |
123.70 | approx. 7-9 days |

*This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.*

This 5th Edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.

- This text has an enhanced mathematical approach, with carefully thought out examples, including many examples with computer sciences applications.

- Historical reviews and biographies bring a human element to their assignments.

- Chapter summaries allow students to review what they have learned.

- Expanded treatment of discrete probability in Chapter 3.

- New material on cryptology, private-key cryptosystems in Chapter 14; public-key RSA cryptosystems in Chapter 16.

- New web site: http://www.aw.com/grimaldi

**PART 1. FUNDAMENTALS OF DISCRETE MATHEMATICS.**

The Rules of Sum and Product.

Permutations.

Combinations: The Binomial Theorem.

Combinations with Repetition.

The Catalan Numbers (Optional).

Summary and Historical Review.

Basic Connectives and Truth Tables.

Logical Equivalence: The Laws of Logic.

Logical Implication: Rules of Inference.

The Use of Quantifiers.

Quantifiers, Definitions, and the Proofs of Theorems.

Summary and Historical Review.

Sets and Subsets.

Set Operations and the Laws of Set Theory.

Counting and Venn Diagrams.

A First Word on Probability.

The Axioms of Probability (Optional).

Conditional Probability: Independence (Optional).

Discrete Random Variables (Optional).

Summary and Historical Review.

The Well-Ordering Principle: Mathematical Induction.

Recursive Definitions.

The Division Algorithm: Prime Numbers.

The Greatest Common Divisor: The Euclidean Algorithm.

The Fundamental Theorem of Arithmetic.

Summary and Historical Review.

Cartesian Products and Relations.

Functions: Plain and One-to-One.

Onto Functions: Stirling Numbers of the Second Kind.

Special Functions.

The Pigeonhole Principle.

Function Composition and Inverse Functions.

Computational Complexity.

Analysis of Algorithms.

Summary and Historical Review.

Language: The Set Theory of Strings.

Finite State Machines: A First Encounter.

Finite State Machines: A Second Encounter.

Summary and Historical Review.

Relations Revisited: Properties of Relations.

Computer Recognition: Zero-One Matrices and Directed Graphs.

Partial Orders: Hasse Diagrams.

Equivalence Relations and Partitions.

Finite State Machines: The Minimization Process.

Summary and Historical Review.

**PART 2. FURTHER TOPICS IN ENUMERATION.**

The Principle of Inclusion and Exclusion.

Generalizations of the Principle.

Derangements: Nothing Is in Its Right Place.

Rook Polynomials.

Arrangements with Forbidden Positions.

Summary and Historical Review.

Introductory Examples.

Definition and Examples: Calculational Techniques.

Partitions of Integers.

The Exponential Generating Functions.

The Summation Operator.

Summary and Historical Review.

The First-Order Linear Recurrence Relation.

The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients.

The Nonhomogeneous Recurrence Relation.

The Method of Generating Functions.

A Special Kind of Nonlinear Recurrence Relation (Optional).

Divide and Conquer Algorithms.

Summary and Historical Review.

**PART 3. GRAPH THEORY AND APPLICATIONS.**

Definitions and Examples.

Subgraphs, Complements, and Graph Isomorphism.

Vertex Degree: Euler Trails and Circuits.

Planar Graphs.

Hamilton Paths and Cycles.

Graph Coloring and Chromatic Polynomials.

Summary and Historical Review.

Definitions, Properties, and Examples.

Rooted Trees.

Trees and Sorting.

Weighted Trees and Prefix Codes.

Biconnected Components and Articulation Points.

Summary and Historical Review.

Dijkstra's Shortest Path Algorithm.

Minimal Spanning Trees: The Algorithms of Kruskal and Prim.

Transport Networks: The Max-Flow Min-Cut Theorem.

Matching Theory.

Summary and Historical Review.

**PART 4. MODERN APPLIED ALGEBRA.**

The Ring Structure: Definition and Examples.

Ring Properties and Substructures.

The Integers Modulo n. Cryptology.

Ring Homomorphisms and Isomorphisms: The Chinese Remainder Theorem.

Summary and Historical Review.

Switching Functions: Disjunctive and Conjunctive Normal Forms.

Gating Networks: Minimal Sums of Products: Karnaugh Maps.

Further Applications: Don't-Care Conditions.

The Structure of a Boolean Algebra (Optional).

Summary and Historical Review.

Definition, Examples, and Elementary Properties.

Homomorphisms, Isomorphisms, and Cyclic Groups.

Cosets and Lagrange's Theorem.

The RSA Cipher (Optional).

Elements of Coding Theory.

The Hamming Metric.

The Parity-Check and Generator Matrices.

Group Codes: Decoding with Coset Leaders.

Hamming Matrices.

Counting and Equivalence: Burnside's Theorem.

The Cycle Index.

The Pattern Inventory: Polya's Method of Enumeration.

Summary and Historical Review.

Polynomial Rings.

Irreducible Polynomials: Finite Fields.

Latin Squares.

Finite Geometries and Affine Planes.

Block Designs and Projective Planes.

Summary and Historical Review.

Exponential and Logarithmic Functions.

Matrices, Matrix Operations, and Determinants.

Countable and Uncountable Sets.