ISBN | Product | Product | Price CHF | Available | |
---|---|---|---|---|---|
Physics for Scientists & Engineers with Modern Physics |
9781292020761 Physics for Scientists & Engineers with Modern Physics |
110.70 |
ISBN | Product | Product | Edition | Cover | Date | Price CHF | Available |
---|---|---|---|---|---|---|---|
Physics for Scientists & Engineers with Modern Physics, Global Edition | 9781292440279 Physics for Scientists & Engineers with Modern Physics, Global Edition |
5 | Softcover | July 2023 | 91.80 |
![]() |
For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors).
This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics.
This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying.
Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.
Pedagogical Features
Page Layout
Great effort has been made to keep important derivations and arguments on facing pages. Students then don’t have to turn back and forth. [Throughout the book readers see before them, on two facing pages, an important slice of physics.]
Revised Vector Notation
Arrows over boldface symbols are now used to denote vectors in text and in art. Provides consistency with the way students write vectors in homework and the way professors write vectors on the board.
New “Chapter Opening Questions” (COQs)
These multiple-choice questions at the beginning of each Chapter immediately engage students with key Chapter concepts, presenting common student misconceptions. Students revisit the COQs later in the Chapter, as an Exercise, to see if their answers have changed. Answers to all Exercises are given at the end of the Chapter.
New Chapter Contents listing on the Chapter-Opening Page
Gives students an overview of Chapter topics without forcing them to turn back to the TOC.
New “Approach” Steps in worked-out Examples
Added to each worked-out Example, the Approach steps help students understand the reasoning behind the method used to solve the problem and answer their questions of 'how/where do I start?'
New “Note” Sections in worked-out Examples
Added to many worked-out Examples after the Solution, these Notes sometimes remark on the solution itself, mention an application, or give an alternate approach to solving the problem.
New Exercises
Integrated throughout the Chapters, Exercises give students a chance to check their understanding through practice before they proceed to other topics. [Answers are given at the end of the Chapter.]
New Caution marginal notes
These notes in the margin of the text warn students of common mistakes / misconceptions about the topic at hand.
New Computer / Numerical Problems
In most Chapters, with an optional introduction in Section 2-9, these are optional and often level III Problems grouped together at the end of most Chapters. These problems require a numerical solution, often requiring a computer, spreadsheet, or programmable calculator to do the sums.
New Examples and Applications
CONTENTS OF VOLUME 1
APPLICATIONS LIST xii
PREFACE xiv
AVAILABLE SUPPLEMENTS AND MEDIA xxii
NOTES TO STUDENTS (AND INSTRUCTORS) ON THE FORMAT xxiv
COLOR USE: VECTORS, FIELDS, AND SYMBOLS xxv
CHAPTER1: INTRODUCTION, MEASUREMENT, ESTIMATING
1—1 The Nature of Science
1—2 Models, Theories, and Laws
1—3 Measurement and Uncertainty; Significant Figures
1—4 Units, Standards, and the SI System
1—5 Converting Units
1—6 Order of Magnitude: Rapid Estimating
*1—7 Dimensions and Dimensional Analysis
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 2: DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION
2—1 Reference Frames and Displacement
2—2 Average Velocity
2—3 Instantaneous Velocity
2—4 Acceleration
2—5 Motion at Constant Acceleration
2—6 Solving Problems
2—7 Freely Falling Objects
*2—8 Variable Acceleration; Integral Calculus
*2—9 Graphical Analysis and Numerical Integration
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 3: KINEMATICS IN TWO OR THREE DIMENSIONS; VECTORS
3—1 Vectors and Scalars
3—2 Addition of Vectors–Graphical Methods
3—3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar
3—4 Adding Vectors by Components
3—5 Unit Vectors
3—6 Vector Kinematics
3—7 Projectile Motion
3—8 Solving Problems Involving Projectile Motion
3—9 Relative Velocity
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 4: DYNAMICS: NEWTON’S LAWS OF MOTION
4—1 Force
4—2 Newton’s First Law of Motion
4—3 Mass
4—4 Newton’s Second Law of Motion
4—5 Newton’s Third Law of Motion
4—6 Weight–the Force of Gravity; and the Normal Force
4—7 Solving Problems with Newton’s Laws: Free-Body Diagrams
4—8 Problem Solving–A General Approach
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 5: USING NEWTON’S LAWS: FRICTION, CIRCULAR MOTION, DRAG FORCES
5—1 Applications of Newton’s Laws Involving Friction
5—2 Uniform Circular Motion–Kinematics
5—3 Dynamics of Uniform Circular Motion
5—4 Highway Curves: Banked and Unbanked
*5—5 Nonuniform Circular Motion
*5—6 Velocity-Dependent Forces: Drag and Terminal Velocity
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 6: GRAVITATION AND NEWTON’S6 SYNTHESIS
6—1 Newton’s Law of Universal Gravitation
6—2 Vector Form of Newton’s Law of Universal Gravitation
6—3 Gravity Near the Earth’s Surface; Geophysical Applications
6—4 Satellites and “Weightlessness”
6—5 Kepler’s Laws and Newton’s Synthesis
*6—6 Gravitational Field
6—7 Types of Forces in Nature
*6—8 Principle of Equivalence; Curvature of Space; Black Holes
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 7: WORK AND ENERGY
7—1 Work Done by a Constant Force
7—2 Scalar Product of Two Vectors
7—3 Work Done by a Varying Force
7—4 Kinetic Energy and the Work-Energy Principle
SUMMARY
QUESTIONS
PROBLEMS
GENERAL PROBLEMS
CHAPTER 8: CONSERVATION OF ENERGY
8—1 Conservative and Nonconservative Forces
8—2 Potential E